• Title/Summary/Keyword: energy dissipated

Search Result 315, Processing Time 0.036 seconds

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller (MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.435-443
    • /
    • 2010
  • This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

Nonlinear Tidal Characteristics along the Uldolmok Waterway off the Southwestern Tip of the Korean Peninsula

  • Kang, Sok-Kuh;Yum, Ki-Dai;So, Jae-Kwi;Song, Won-Oh
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 2003
  • Analyses of tidal observations and a numerical model of the $M_2$ and $M_4$ tides in the Uldolmok waterway located at the southwestern tip of the Korean Peninsula are described. This waterway is well known fer its strong tidal flows of up to more than 10 knots at the narrowest part of the channel. Harmonic analysis of the observed water level at five tidal stations reveals dramatic changes in the amplitude and phase of the shallow water constituents at the station near the narrowest part, while survey results show a decreasing trend in local mean sea levels toward the narrow section. It was also observed that the amplitudes of semi-diurnal constituents, $M_2$ and $S_2$ are diminishing toward the narrowest part of the waterway. Two-dimensional numerical modeling shows that the $M_2$ energy flux is dominated by the component coming from the eastern boundary. The $M_2$ energy is inward from both open boundaries and is transported toward the narrow region of the channel, where it is frictionally dissipated or transferred to other constituents due to a strong non-linear advection effect. It is also shown that the $M_4$ generation is strong around the narrow region, and the abrupt decrease in the M4 amplitude in the region is due to a cancellation of the locally generated M4 with the component propagated from open boundaries. The superposition of both propagated and generated M4 contributions also explains the discontinuity of the M4 phase lag in the region. The tide-induced residual sea level change and the regeneration effect of the $M_2$ tide through interaction with $M_4$ are also examined.

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

Multiple Pounding Tuned Mass Damper (MPTMD) control on benchmark tower subjected to earthquake excitations

  • Lin, Wei;Lin, Yinglu;Song, Gangbing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1123-1141
    • /
    • 2016
  • To explore the application of traditional tuned mass dampers (TMDs) to the earthquake induced vibration control problem, a pounding tuned mass damper (PTMD) is proposed by adding a viscoelastic limitation to the traditional TMD. In the proposed PTMD, the vibration energy can be further dissipated through the impact between the attached mass and the viscoelastic layer. More energy dissipation modes can guarantee better control effectiveness under a suite of excitations. To further reduce mass ratio and enhance the implementation of the PTMD control, multiple PTMDs (MPTMD) control is then presented. After the experimental validation of the proposed improved Hertz based pounding model, the basic equations of the MPTMD controlled system are obtained. Numerical simulation is conducted on the benchmark model of the Canton Tower. The control effectiveness of the PTMD and the MPTMD is analyzed and compared under different earthquake inputs. The sensitivity and the optimization of the design parameters are also investigated. It is demonstrated that PTMDs have better control efficiency over the traditional TMDs, especially under more severe excitation. The control performance can be further improved with MPTMD control. The robustness can be enhanced while the attached mass for each PTMD can be greatly reduced. It is also demonstrated through the simulation that a non-uniformly distributed MPTMD has better control performance than the uniformly distributed one. Parameter study is carried out for both the PTMD and the MPTMD systems. Finally, the optimization of the design parameters, including mass ratio, initial gap value, and number of PTMD in the MPTMD system, is performed for control improvement.

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Operational and Thermal Characteristics of a Microchip Yb:YAG Laser (마이크로 칩 Yb:YAG 레이저의 동작 및 열적 특성)

  • Moon, Hee-Jong;Hong, Sung-Ki;Lim, Chang-Hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • Operational and thermal characteristics of a thin disk Yb:YAG crystal with a thickness of 0.8 mm were studied using as a pumping source a fiber-coupled 930 nm laser diode. The heat generated in the crystal was dissipated by placing both surfaces in contact with copper plates with central hole, and the dependence of the temperature change in the illuminated spot on hole size was investigated by measuring the spectral change of the lasing peaks. The slope efficiency and optical-to-optical efficiency with respect to the LD pump power were as high as 42.2% and 34.8%, respectively. The temperature at the illuminated spot increased with diode current and with increasing hole size of the copper plate. When the hole size considerably exceeded the crystal thickness, the temperature rise deviated from the linear increase at high pump power.

Sustain Driver and Reset Circuit for Plasma Display (플라즈마 디스플레이를 위한 서스테인 및 리셋 회로)

  • Kang, Feel-Soon;;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.685-688
    • /
    • 2005
  • An efficient sustain driver and a useful reset circuit composition technique are proposed for plasma display panel drive. The proposed sustain driver uses a series resonance between an external inductor and a panel to recover the energy dissipated by a capacitive displacement current of PDP. It consists of four switching devices, an inductor, and external capacitors, which supply sustain voltage sources. Although the amplitude of an input voltage source is twice as high as that of conventional sustain drivers, average voltage stress imposed on power switching devices is nearly same in their values. Moreover, the input voltage source can be directly applied for the use of a reset voltage source. Owing to this scheme, the proposed sustain driver and the embedded reset circuit have a simple configuration. The operational principle and design example are given with theoretical analyses. The validity of the proposed drive system is verified through experiments using a prototype equipped with a 7.5-inch-diagonal AC plasma display panel.

  • PDF