• Title/Summary/Keyword: energy direction

Search Result 2,138, Processing Time 0.032 seconds

Direction detection technique of radioactive contaminants based on rotating collimator (회전형 콜리메이터 기반 방사능 오염원의 방향탐지 기법)

  • Hwang, Young-Gwan;Song, Keun-Young;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1519-1527
    • /
    • 2020
  • AGeneral radiation measuring devices have been developed in the form of spatial dose rate detection devices that measure dose rates to radioactive contaminant and 2D or 3D imaging devices for radioactive contamination information. Each of these radiation detection techniques has advantages. The advantages of both detection devices are necessary to minimize personal injury and rapid decontamination in the area of a radioactive accident. In this paper, we proposed a technique that can measure the dose rate and direction information about the radioactive pollutant source in real time using a detection sensor, a rotating body, and a directional shield for radioactive pollutant detection. The rotational-based detection device is configured to check the dose rate and direction using the location information of the rotator and measurement value. We proposed a measurement technique for vertical and horizontal directions through multiple holes. It was confirmed that the measurement error for direction information was less than 1% when detected in the horizontal direction.

Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials (탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향)

  • Hwang, Jin-Ho;Hwang, Woon-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

Surface Wind Regionalization Based on Similarity of Time-series Wind Vectors

  • Kim, Jinsol;Kim, Hyun-Goo;Park, Hyeong-Dong
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.80-89
    • /
    • 2016
  • In the complex terrain where local wind systems are formed, accurate understanding of regional wind variability is required for wind resource assessment. In this paper, cluster analysis based on the similarity of time-series wind vector was applied to classify wind regions with similar wind characteristics and the meteorological validity of regionalization method was evaluated. Wind regions in Jeju Island and Busan were classified using the wind resource map of Korea created by a mesoscale numerical weather prediction modeling. The evaluation was performed by comparing wind speed, wind direction, and wind variability of each wind region. Wind characteristics, such as mean wind speed and prevailing wind direction, in the same wind region were similar and wind characteristics in different wind regions were meteor-statistically distinct. It was able to identify a singular wind region at the top area of Mt. Halla using the inconsistency of wind direction variability. Furthermore, it was found that the regionalization results correspond with the topographic features of Jeju Island and Busan, showing the validity.

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Study of stability and evolution indexes of gobs under unloading effect in the deep mines

  • Fu, Jianxin;Song, Wei-Dong;Tan, Yu-Ye
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-451
    • /
    • 2018
  • The stress path characteristics of surrounding rock in the formation of gob were analysed and the unloading was solved. Taking Chengchao Iron Mine as the engineering background, the model for analysing the instability of deep gob was established based on the mechanism of stress relief in deep mining. The energy evolution law was investigated by introducing the local energy release rate index (LERR), and the energy criterion of instability of surrounding rock was established based on the cusp catastrophe theory. The results showed that the evolution equation of the local energy release energy of the surrounding rock was quartic function with one unknown and the release rate increased gradually during the mining. The calculation results showed that the gob was stable. The LERR per unit volume of the bottom structure was relatively smaller, which mean the stability was better. The LERR distribution showed that there was main energy release in the horizontal direction and energy concentration in the vertical direction which meet the characteristics of deep mining. In summary, this model could effectively calculate the stability of surrounding rock in the formation of gob. The LERR could reflect the dynamic process of energy release, transfer and dissipation which provided an important reference for the study of the stability of deep mined out area.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

Energy Performance Analysis the Common House Pansang Type and Tower (공동주택의 판상형과 타워형 에너지 성능 비교 분석)

  • Yoon, Sung-Meen;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • This study focus on the analysis of the energy performance in accordance with apartment houses arrangement type by using Ecotect Analysis. Korea, energy-poor country, the rate of dependence on imports amount to 94%, have to reduce energy consumption part of building except in industry and transport which affect the economic. Apartment houses are built in various forms in order to reduce energy, are modelled in each window area ratio, shape, orientation, climate through simulation. Through this study, we can analyze energy performance by form, window area ratio, orientation, climate change and know the optimal elements by the form. In particular, although there have been studied research on the window area ratio and research related to the arrangement form, determined that the information on the regional climate characteristics and the direction of placement is less than existing research. To supplement those problem, adding to seven direction(West, S-60-W, S-30-W, South, S-30-E, S-60-E, East) and climatic element(southern region) is characteristic of this study. The form of apartment houses was modelled for apartment houses built in the 10 years since. And each modeling were analyzed by Ecotect Analysis.

Tribological Behavior of the Alumina Reinforced with Unidirectionally Oriented SiC whiskers depending on whisker orientation (일방향성 배열을 가진 Sic whisker에 의해 강화된 알루미나 복합체의 Whisker orientation 에 따른 마모마찰 특성)

  • 간태석;한병동;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.220-224
    • /
    • 1999
  • Sliding wear test was employed to determine the effect of whisker content and orientation on the firiction and wear behavior of SiC whisker reinforced alumina. Composites containing unidirectionally oriented whiskers were prepared by a modified tape casting followed by lamination, binder removal and hot pressing in order to align the whiskers in the tape casting direction. Wear coefficients on three directions were measured; parallel and normal to the tape casting direction on the tape casting surface and normal to lamination direction on surfnce normal to the tape casting direction. In the effect of whisker orientation, the highest wear rate was obtained in the direction parallel tape casting direction and the lowest in the direction normal to lamination direction at all temperatures. Silicon oxide layer amoothing the surface was detected by energy dispersive X-ray analysis on the worn surface.

  • PDF