• Title/Summary/Keyword: energy direction

Search Result 2,138, Processing Time 0.03 seconds

The current status and direction of development of lead acid battey for electric energy storage system. (전력저장용 연축전지의 개발방향 및 현황)

  • Chon, M.H.;Kim, K.T.;Park, J.C.;Kim, H.Y.;Ko, Yo;Eom, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.277-283
    • /
    • 1989
  • For the battery energy storage system (BESS), battery is one of most important parts. Various new type batteries for load shifting are under developing. The lead acid battery technology status such as structure, charge and discharge characteristics, life cycle etc. is reviewed and research trend is also introduced.

  • PDF

The Impacts of Korea Train Express Service Quality on Railroad Management Performance (고속철도(KTX)의 서비스품질이 철도 경영성과에 미치는 영향)

  • Park, Heung-Soon;Ju, Yong-Jun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1744-1759
    • /
    • 2007
  • This study intended to identify the problems of the railroad which are raised as one of the 21C next-generation but to define the direction for the absence of the national policy and examine the competitiveness of railway transportation which is a Green Network with low environmental destruction and high energy efficiency as the continuable means of transportation for the 21st century with superiority to energy crisis caused by high oil price, conclusion of the Kyoto Protocol for worsened air pollution, and reduced cost of traffic jam.

  • PDF

Energy Consumption - Economic Growth Nexus in Vietnam: An ARDL Approach with a Structural Break

  • NGUYEN, Ha Minh;NGOC, Bui Hoang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.1
    • /
    • pp.101-110
    • /
    • 2020
  • Energy and energy consumption play an important role in strategies for socio-economic development of the country. In 1995, Vietnam officially entered the 500 kV North-South transmission power line exploits, with a full length of 1,487 km. The purpose of this study is to investigate the breakpoint and the transition effect of energy consumption to economic growth in Vietnam during the period of 1980-1994, and 1995-2016. The Autoregressive Distributed Lag (ARDL) approach and the Bounds test are used to test for the presence of cointegration, whereas the Toda and Yamamoto procedure Granger causality test is used for the direction of causality. The result of the Bounds test validates the existence of cointegration among the included variables. The empirical results provide evidence that energy consumption has a positive impact on the economic growth of Vietnam in the long run. The causality test shows that there is bi-directional causality between energy consumption and economic growth, supported feedback hypothesis. There is a breakpoint in 1995 and the contribution of energy consumption in economic growth in the period of 1995-2016 is lower than the stage 1980-1994. This study suggests Government authorities explore new sources of energy to achieve sustainable economic development in the long run.

A Study on the Application Method in Korea of Energy Harvesting Technology - Focused on the Case Study of Interseasonal Heat Transfer System - (에너지 하베스팅 기술의 국내 건축물 적용 방안에 관한 기초 연구 - Interseasonal Heat Transfer System 적용 사례 중심으로 -)

  • Jo, Byungwan;Lee, Yunsung;Yoon, Kwangwon;Kim, Dogeun
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.51-62
    • /
    • 2014
  • PURPOSES: This research is a basic study for application method in korea of energy harvesting technology, and it is a research to find out the direction of architectural planning through analyzing cases of interseasonal heat transfer system applied buildings. METHODS : In this paper authors investigate application necessity of energy harvesting technology, we analyzed energy use status of building section through analyzing domestic energy consumption status and analyzed domestic renewable energy generation potential. Also we study the features of energy harvesting technology, interseasonal heat transfer system, and case study on interseasonal heat transfer system applied buildings. RESULTS : On the basis of case study on interseasonal heat transfer system applied buildings, we analyzed feasibility study and classified into four sections(economic, environment, design, applicability), and suggested directions of architectural planning. CONCLUSIONS: Economic renewable energy for public and commercial buildings(hospitals, offices, schools, factories) can be provided effectively using Interseasonal Heat Transfer.

A Study on the Housing Energy's Consumption and Saving Consciousness on the Housing Tenure (주택점유형태별 주택에너지의 소비 및 절약의식에 관한 연구)

  • Kwon, Chi-Hung;Yoo, Jung-Hyun
    • Land and Housing Review
    • /
    • v.4 no.4
    • /
    • pp.395-406
    • /
    • 2013
  • The purpose of this paper is to analyze of the home energy consumption and conservation awareness, usage patterns and policy directions for housing energy-saving house by three types of houses tenure. The results of analysis is : First, there is existed to the difference in average by each housing tenure types. Second, the residents of sales apartment and tenants of private and public rental apartment are practices in the energy consumption and conservation Third, the behavior between residents of sale-housing and the tenants of private and rental housing on the energy-saving behavior items is existed with behavioral differences. Finally, the consumer-oriented incentives method in the future housing energy' policy direction might be used more efficient and effective than others

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method (3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측)

  • Kim, Hyun Wook;Nam, Jeong-Hee;Choi, Ji Young
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

Fatigue Characteristics and FEM Analysis of 18Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • 장경천;국중민;최병희;정재강;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.136-142
    • /
    • 2004
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue lift of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue lift on base metal specimens or solution annealed specimens showing that the fatigue life was almost the same. The maximum stresses of X, Y, and Z axis direction showed about 2.12${\times}$10$^2$MPa, 4.40${\times}$10$^2$MPa and 1.32${\times}$10$^2$MPa respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about 3.5∼10% than that of the experiment result showing that the longer fatigue crack length, the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

  • PDF

Effect of Nano Silver Coating on the Mechanical Properties and Hand of Cotton Fabrics (은나노 코팅이 면직물의 역학적 특성과 태에 미치는 영향)

  • Kang, Mi-Jung;Kwon, Young-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.8
    • /
    • pp.1273-1279
    • /
    • 2009
  • This study examined the difference in the mechanical properties of cotton fabrics treated with nano silver. Nano silver powder, UV-absorber, and DMDHEU are applied to cotton fabrics. The reagents added in a finishing solution were Triton X-100 and $MgCl_2$ $6H_2O$. The mechanical properties of the fabrics were measured by KES-FB system. From these, the primary hand values were evaluated by the conversion equation (KN-202-DS). The results of this study are summarized as follows. The fabric tensile properties and bending properties are increased by the application of nano silver, DMDHEU, and UV-absorber mixed. The values of tensile properties in the warp direction were significantly lower than those in the weft direction. However, the values of bending properties in the warp direction were higher than those in the weft direction. The differences in the values of compression parameters by nano silver coating were unnoticeable. However, the compression energy and resilience of compression in each fabric was increased by DMDHEU treatment. The SMD values of cotton fabrics are decreased by nano silver, DMDHEU, and UV-absorber mixed treatment.