• Title/Summary/Keyword: energy direction

Search Result 2,130, Processing Time 0.046 seconds

Data Management and Communication Networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : Its Functionality and Design Requirements

  • Cha, Kyung-Ho;Park, Gun-Ok;Suh, Sang-Moon;Kim, Jang-Yeol;Kwon, Kee-Choon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.291-296
    • /
    • 1998
  • The DAta management and Communication NETworks (DACONET), Which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterised as the distributed real-time system architecture with high performance, Future direction, in which advanced technology is being continually applied to Man-Machine interface System Development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS

  • PDF

Thermal Energy Extraction from Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질로부터의 열에너지 추출에 관한 연구 - 핀이 부착된 열싸이폰 이용에 관하여 -)

  • Mok, Jai-Kyun;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.5-12
    • /
    • 1988
  • One of the effective means to transfer the heat into and from the energy storage medium is thermosyphon. In this study, a two-phase closed thermosyphon with circular fins was used to extract the thermal energy stored in paraffin wax (Sunoco p-116). Heat transfer characteristics along the heat flow path were investigated as well as the overall performance. Some of the important results are as follows: (1) The temperature distribution of the wax in the radial direction was always maintained fairly uniformly; (2) Compared with bare thermosyphon, the heat transfer rate was vastly improved in the early stage of the experiment; and (3) Heat transfer coefficient between the wax and evaporating section of thermosyphon remained nearly constant during the experiment.

  • PDF

On the analysis of delamination in multilayered inhomogeneous rods under torsion

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.377-391
    • /
    • 2019
  • The present paper is focused on analyzing the delamination of inhomogeneous multilayered rods of circular cross-section loaded in torsion. The rods are made of concentric longitudinal layers of individual thickness and material properties. A delamination crack is located arbitrary between layers. Thus, the internal and external crack arms have circular and ring-shaped cross-sections, respectively. The layers exhibit continuous material inhomogeneity in radial direction. Besides, the material has non-linear elastic behavior. The delamination is analyzed in terms of the strain energy release rate. General solution to the strain energy release rate is derived by considering the energy balance. The solution is applied to analyze the delamination of cantilever rod. For verification, the strain energy release rate is derived also by considering the complementary strain energy.

On Tidal Energy Horizontal Circulation (조석에너지의 수평적 순환)

  • Nekrasov, Alexey V.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-177
    • /
    • 1992
  • Some features of tidal energy horizontal flux in the ocean are considered. using the concept of “energy flux ellipses” which is a hodograph of momentary fluxes over a tidal semi-period. A number of characteristics of this ellipse are considered as well as some peculiarities of energy flux field in different types of tidal waves and their combinations (plane, Kelvin, Sverdrup, Poincare, amphidromic system). For forced tidal waves in equatorial channels some results are obtained explaining the dependence of energy flux direction on the channel dimensions.

  • PDF

INVERSE ENERGY CASCADE AND IMBALANCED ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoonkyu;Cho, Junhyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2013
  • Electron magnetohydrodynamic (EMHD) turbulence provides a fluid-like description of small-scale magnetized plasmas. Most EMHD turbulence studies consider "balanced" EMHD turbulence. However, imbalanced EMHD turbulence has never been studied. In this study, we numerically study "imbalanced" EMHD turbulence. Imbalanced turbulence means that wave packets moving in one direction have high amplitudes or strong perturbations than the others. In driven imbalanced EMHD turbulence, non-zero magnetic helicity is injected. When magnetic helicity is injected at a scale, we expect to have inverse cascade of magnetic helicity, as well as magnetic energy, in three-dimensional (3D) EMHD turbulence. For no helicity injection, we do not observe inverse energy cascade. However, when magnetic helicity is injected, inverse cascade of magnetic helicity is clearly observed. Magnetic energy also shows inverse cascade. In EMHD turbulence, it is well known that magnetic energy on scales smaller than the energy injection scale is forward-cascading quantity and the magnetic energy spectrum follows a k^{-7/3} one. On the other hand, the inverse-cascading entity on scales larger than the energy injection scale is uncertain. If the magnetic helicity is inverse-cascading quantity, we will obtain a k^{-5/3} magnetic energy spectrum. In our simulations, we do observe energy spectrum consistant with k^{-5/3} on large scales. Therefore, we confirm that magnetic helicity indeed is the inverse-cascading entity in 3D EMHD turbulence.

  • PDF

A Study on Technology Innovation Framework through Analysis of RD&D Cases in Electric Power Industry (전력산업 RD&D 실증사례 분석을 통한 기술혁신 프레임워크 설정에 관한 연구)

  • Park, Sooman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This study aimed at proposing a RD&D good practice policy guidelines for energy technology innovation in electric power industry, we identified the success factors on energy RD&D through representative case analysis such as energy RD&D demonstration project and strategy plan, technology road map, etc. Based on a successful case study, we have identified the key elements needed to suggest when setting a RD&D technology innovation policy framework for technological competitiveness in the power industry sector. We have presented guidelines for energy technology innovation direction from the full cycle perspective of RD&D. The energy RD&D innovation system that we have established is meaningful in that the implications are derived and reflected through the case analysis of developed countries. The results of this study are as follows; Enhancement of R&D investment performance, commercialization of research achievements, promotion of export industrialization of electric power industry, establishment of RD&D governance system of power energy, etc.

A Study on the Energy Policy to Respond to the Climate Change in Germany (I) (독일의 기후변화에 대응한 에너지정책에 관한 고찰 (I))

  • Ahn, Young-Jin
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.135-148
    • /
    • 2013
  • This paper attempts to explain the energy policy to respond to climate change that is debated in recent years. Especially by the case of Germany among developed countries, the study investigates the direction, strategy and measure of energy policy which are implemented at the national level. The Energy policy of Germany revealed through this study will provide implications for the establishment and propulsion of the energy policy trying to overcome the crisis of energy resources and reduce greenhouse gas emissions. Firstly, this study reviews Germany's supply and consumption of energy and trends of greenhouse gas emission, and secondly discusses the process of the historical development of Germany's energy policy.

  • PDF

Selecting strategic energy technology R&D programs applied to the AHP approach as planning a big-sized energy R&D program (대형과제 기획시 계층분석적 의사결정기법을 적용한 전략적 에너지기술 R&D 프로그램 선정)

  • Lee, Seong-Kon;Mogi, Gento
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.690-693
    • /
    • 2007
  • The R&D budget of energy technology development has increased in the sector of Korean energy technology development continuously. In addition to that, KIER, the government invested research institute and unique energy technology R&D research institute, is trying to plan for a big-sized energy R&D program for the well focused R&D and excellent research outcomes. In the phase of R&D process, the planning is one of the most important sectors because it drives the direction of R&D. In this study, we suggest the assessment criteria to select a strategic energy technology R&D programs by the analytic hierarchy process, which is one of multi-criteria decision making method (MCDM). We structure 2 tiers of hierarchy for assessing a big-sized R&D program and also establish 6 criteria in the level 1, which are energy environment, economic spin-off, technical spin-off, marketability, KIER mission, and cost. We allocate the relative weights of criteria by checking the values of consistency ratio as making pairwise comparisons. The result of this research will provide the decision makers as they select a right well focused R&D program.

  • PDF

Evaluation on the Performance of Power Generation and Vibration Characteristics of Energy Harvesting Block Structures for Urban & Housing Application (도시·주택 적용 에너지수확 블록구조의 진동 특성 및 발전성능 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3735-3740
    • /
    • 2012
  • In this paper, the performance of power generation for the energy harvesting block with a combination of piezoelectric technology and electromagnetic technology among various energy harvesting technologies was investigated. The goal of this study is to evaluate on the applicability of our developed energy harvesting block into the field of urban & housing. First, we carried out a finite element vibration analysis and evaluated the performance of power generation for the multi-layer energy harvester at laboratory scale. Second, we described the features of our developed prototype module that includes amplification technologies to improve power density per module and evaluated the performance of power generation for the energy harvesting block in a variety of ways. Finally, we suggested the direction for the improvement of the energy harvesting block module.

The current status and direction of development of lead acid battey for electric energy storage system. (전력저장용 연축전지의 개발방향 및 현황)

  • Chon, M.H.;Kim, K.T.;Park, J.C.;Kim, H.Y.;Ko, Yo;Eom, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.277-283
    • /
    • 1989
  • For the battery energy storage system (BESS), battery is one of most important parts. Various new type batteries for load shifting are under developing. The lead acid battery technology status such as structure, charge and discharge characteristics, life cycle etc. is reviewed and research trend is also introduced.

  • PDF