• 제목/요약/키워드: energy conversion systems

검색결과 620건 처리시간 0.024초

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • 제2권2호
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.

RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구 (Study on Water / Energy / Mutual-changing Technology by RO/PRO Process)

  • 최영권;윤택근;손진식;이상호;최준석
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토 (A Feasibility Study on DC Microgrids Considering Energy Efficiency)

  • 유철희;정일엽;홍성수;채우규;김주용
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환 (Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon)

  • 유수진;김샛별;김용태;박은덕
    • 청정기술
    • /
    • 제16권1호
    • /
    • pp.19-25
    • /
    • 2010
  • 결정성의 셀룰로우스를 수소분위기하에서 다양한 귀금속 촉매를 이용하여 폴리올로 전환시키는 연구를 수행하였다. 촉매는 단일 귀금속(Pt, Ru, Ir, Rh, Pd)을 활성탄에 습식함침법으로 담지시켜서 제조하였으며, Pt/$\gamma-Al_2O_3$와 Pt/H-mordenite를 비교촉매로 사용하였다. 생성물은 고압액체크로마토그래피로 분석하였다. 촉매는 질소흡착, X-선 회절법, 유도결합플라즈마분광법(ICP-AES), 수소-승원환원분석($H_2$-TPR), 그리고 일산화탄소 화학흡착을 통하여 분석하였다. 셀룰로우스의 전환율은 사용한 촉매와 연관관계가 낮은 것으로 나타났으며 활성탄에 담지된 귀금속 촉매중에서 Pt/AC가 높은 폴리올의 수득률에 바람직한 것으로 조사되었다.

Aerodynamic Characteristics of Impulse Turbine with an End Plate for Wave Energy Conversion

  • HYUN BEOM SOO;MOON JAE SEUNG;HONG SEOK WON;KIM KI SUP
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.1-7
    • /
    • 2005
  • This paper deals with the design and aerodynamic analysis of a special-type impulse turbine, with an end plate for wave energy conversion. Numerical analysis was performed using a CFD code, FLUENT. The main idea of the proposed end plate was to minimize the adverse effect of tip clearance of turbine blade, and was borrowed from ducted propeller, with so-called penetrating end plate for special purpose marine vehicles. Results show that efficiency increases up to $5\%$, depending on the flow coefficient; a higher flow coefficient yields increased efficiency. Decrease of input coefficient CAwith an end plate is the main reason for higher efficiency. Performance of end plate at various design parameters, as well as flow conditions, was investigated; the advantages and disadvantages of the presentimpulse turbine were also discussed.

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

Unsteady flow around a two-imensional section of a vertical axis turbine for tidal stream energy conversion

  • Jung, Hyun-ju;Lee, Ju-Hyun;Rhee, Shin-Hyung;Song, Mu-Seok;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.64-69
    • /
    • 2009
  • The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 aiifoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.

Design and Control of a Bidirectional Power Conversion System with 3-level T-type Inverter for Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Oh, Chang-Yeol;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.326-332
    • /
    • 2018
  • In this paper, the design process and the control method of the power conversion system (PCS) that consists of a bidirectional DC-DC converter and a 3-level T-type inverter for an energy storage system is presented. Especially the design method of the output LCL filter for a 3-lvel T-type inverter without complex mathematical process are proposed. The validity of the control method and design process in this paper are verified through simulation and experimental analysis.