• Title/Summary/Keyword: energy conversion rate

Search Result 501, Processing Time 0.026 seconds

Numerical Analysis in a 1 kWe SOFC Stack for Variation of the Channel Height in Separators (분리판의 채널 높이에 따른 1 kWe 급 고체산화물 연료전지 스택 수치 해석)

  • YIN, HAOYUAN;KIM, YOUNG JIN;YI, KUNWOO;KIM, HYEON JIN;YUN, KYONG SIK;YU, JI HAENG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.550-556
    • /
    • 2022
  • In this study, the flow uniformity was analyzed by performing numerical analysis on the 1 kWe internal manifold type solid oxide fuel cell stack according to the channel height of the separator. Also, it was examined by varying the fuel utilization rate and oxygen utilization rate. From the calculation results, we found that as the channel height of the separator decreased, the pressure drop increased exponentially. In addition, it was found that as the channel height of the separator decreased, the gas flow resistance inside the unit cell increased, and the flow resistance increased the pressure drop, thereby improving the flow uniformity inside the stack. Finally, the calculation results showed that as the fuel and oxygen utilization increased, the flow uniformity also improved.

Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming (고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산)

  • Kim, Seong-Cheon;Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

Dust accumulation effect on solar thermal energy systems performance

  • Alsaad, Mohammad A.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.157-165
    • /
    • 2015
  • This research investigates the effect of natural dust accumulation on the glass cover of solar thermal energy conversion systems. Four similar, locally manufactured, flat plate solar collectors are used. All collectors are South oriented with tilt angle of $40^{\circ}$. The glass cover of one collector is kept clean of dust during the experimental period while the second collector is cleaned at the beginning of each month. The third collector is cleaned every two months while the fourth collector is kept un-cleaned throughout the experimental period of four months. The calculated parameters are the solar heat gain rates and the corresponding values of the thermal efficiency. The result of the present work indicates that the percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of one and two months is 11.4% and 17.0%, respectively. The percentage decrease of thermal efficiency during the same duration periods is 4.0% and 6.1%, respectively. The percentage of fractional reduction of the useful heat gain rate due to dust accumulation during a period of three and four months is 27.8% and 31.9%, respectively. The percentage decrease of monthly thermal efficiency during the same duration period is 10.2% and 11.3%, respectively.

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion (외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석)

  • Hwang, Chan-Won;Kim, Ryang-Gyoon;Ryu, Kwang-Il;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.

Determination of the exposure conversion coefficient for 3" X 3" NaI spectrum (3" X 3" NaI 스펙트럼의 조사선량 변환계수 결정)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • In order to find the exposure conversion coefficients for 3"X3" NaI spectrum, we measured the exposure rates with the pressurized ion chamber at 29 different areas in the range of $4{\sim}23{\mu}R\;h^{-1}$, and also measured the gamma spectra with 3"X3" and 4"X4" NaI detectors, simultaneously. The exposure conversion coefficient of the total energy method was determined using the linear relation between the measured exposure rate and the gamma spectrum energy. In order to find the exposure conversion coefficients of the energy band method, we applied the exposure conversion coefficients recommended by NCRP to the 4"X4" NaI spectra, and calculated the exposure rates due to $^{40}K,\;^{238}U$, and $^{232}Th$ series respectively. Using the linearly proportional relation between the obtained $^{232}Th$ series exposure rate and peak area of 2614 keV that represents the $^{232}Th$ series, we obtained the exposure conversion coefficients for $^{232}Th$ series. We also determined the conversion coefficients for $^{238}U$ series and $^{40}K$ using a similar method.

  • PDF

Recycling of Li2ZrO3 as LiCl and ZrO2 via a Chlorination Technique

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Keun-Young;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.271-278
    • /
    • 2021
  • In this study, a chlorination technique for recycling Li2ZrO3, a reaction product of ZrO2-assisted rinsing process, was investigated to minimize the generation of secondary radioactive pyroprocessing waste. It was found that the reaction temperature was a key parameter that determined the reaction rate and maximum conversion ratio. In the temperature range of 400-600℃, an increase in the reaction temperature resulted in a profound increase in the reaction rate. Hence, according to the experimental results, a reaction temperature of at least 450℃ was proposed to ensure a Li2ZrO3 conversion ratio that exceeded 80% within 8 h of the reaction time. The activation energy was found to be 102 ± 2 kJ·mol-1·K-1 between 450 and 500℃. The formation of LiCl and ZrO2 as reaction products was confirmed by X-ray diffraction analysis. The experimental results obtained at various total flow rates revealed that the overall reaction rate depends on the Cl2 mass transfer rate in the experimental condition. The results of this study prove that the chlorination technique provides a solution to minimize the amount of radioactive waste generated during the ZrO2-assisted rinsing process.

Oxidation Behavior of UO$_2$in Air at 300~55$0^{\circ}C$

  • Kang, Kweon-Ho;Hwang, Suk-Youl;Kim, Kil-Jeong
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.198-202
    • /
    • 1997
  • The oxidation behavior of UO$_2$pellets was studied using a thermogravimetric analyzer and an XRD in the temperature range of 300 to 550$^{\circ}C$ in air. From XRD studies it is found that UO$_2$is converted to U$_3$O$\_$8/ and the weight gains of UO$_2$specimen are characterized by S-shape curves. After complete oxidation the specimens broke into fine powder and the average weight gain was about 3.93 wt%. The activation energy of 50% conversion of UO$_2$to U$_3$O$\_$8/ is 81.6 kJ/mol and the oxidation rate per unit time was found to be as follows dw/dt=6.54${\times}$10$\^$6/ e (equation omitted), wt%/h : at 50% conversion of UO$_2$into U$_3$O$\_$8/ where w, t and T were wt% gain, conversion time and temperature, respectively.

  • PDF

ECONOMIC ANALYSIS BY GLASS TYPES IN BALCONY CONVERSION OF MULTI-FAMILY HOUSING PROJECTS

  • H.G. Kim;D.I. Kim;D.W. Ko;T.H. Hong;C.T. Hyun;K.J. Koo
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.625-634
    • /
    • 2007
  • Energy-saving is one of important issues in multi-family housing projects in South Korea. According to the study by Yu et al. (2002), the balcony conversion causes energy loss approximately one and a half times. Therefore, it is important to select the economical glass type in the balcony window. In order to identify the most economical glass type of balcony conversion in multi-family housing projects, the most typical type of the multifamily housing projects in the metropolitan area was selected as a candidate project. The selected candidate project has been simulated using ENERGY-10 program to estimate the heat load by the different five types of glasses as well as their life cycle cost analysis (LCCA) using present worth method. Finally, sensitivity analysis has been conducted to determine the most economical glass types under a different discount rate (interest rate) and service life of building.

  • PDF

Wells Turbine for Wave Energy Conversion -Effect of Trailing Edge Shape-

  • Takasaki, Katsuya;Tsunematsu, Tomohiro;Takao, Manabu;Alam, M M Ashraful;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.307-312
    • /
    • 2016
  • The present study reported of the use of special shaped blade to reduce the difference in pressure across the Wells turbine for wave energy conversion. The blade profile was composed of NACA0020 airfoils and trailing edge was notched like chevron. Experiments were performed investigating the influence of trailing edge shape on the turbine performance. Four notch depths were used to investigate the effect of depth of cut on the turbine performance. As results, by placing a notch-cut at the trailing edge of the blade, it was possible to reduce the pressure difference across the turbine without lowering the efficiency. In addition, the pressure difference substantially reduced at a constant rate with the increase of the cut ratio.

Reduction Characteristics of Oxygen Carrier Particles for Chemical-looping Combustor with Different Fuels (매체순환식 가스연소기용 산소공여입자들의 연료별 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • Reduction reactivity and carbon deposition characteristics of three oxygen carrier particles(OCN01, OCN02, OCN03) have been investigated by using hydrogen, methane, syngas, and natural gas as fuels. For all particles, the maximum conversion, the oxygen transfer capacity, and the degree of carbon deposition increased as the reactive carbon contents increased. The reduction rate and the oxygen transfer rate increased as the moles of required oxygen per input gas increased. The change of maximum conversion, reduction rate, oxygen transfer capacity, oxygen transfer rate and degree of carbon deposition for different fuels can be explained consistently by using parameters such as the reactive carbon contents and the moles of require oxygen per input gas.