• Title/Summary/Keyword: energy consumption cost

Search Result 764, Processing Time 0.023 seconds

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

Energy efficiency retrofit package plan for existing buildings (기존 건축물의 에너지 효율화 리트로핏 패키지 방안)

  • Kim, Su Min;Cho, Hyun Mi
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.95-101
    • /
    • 2020
  • In the past few decades, the global population growth and rapid economic development have resulted in significant increases in building energy consumption. To reduce greenhouse-gas emissions and building energy consumption, building materials and energy technologies must be optimized. Building retrofitting is a more efficient method than reconstruction to improve the building energy performance. In order to improve the energy performance of existing buildings, this study proposed energy-efficiency retrofit plans and derived cost-effective retrofit plan. The energy efficient retrofit method is achieved through the packaging of energy technology and the energy and cost reduction effect of the energy efficiency retrofit package are analyzed. As a result of the study, the energy-efficiency retrofit package showed an energy reduction effect of up to 60% or more and a construction cost reduction of about 30%. This study argues that optimal energy and construction cost reduction of existing buildings are possible through the packaging of energy efficiency technology.

A Study on the Evaluation of Energy Consumption of the Air Compressor (공기압축기 소비에너지 평가에 관한 연구)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2020
  • Various efforts have been initiated to reduce the energy consumption of the compressor as it is one of the approaches to saving a large portion of the fixed cost of the production site. Various results of reducing the energy consumption of the compressor have been reported, but to reduce the energy consumption of the compressors fundamentally, regular management of the compressor should ensure optimum operation. This requires periodic on-site visits by experts, but is often overlooked as a cost issue, resulting in the use of the compressor in low-efficiency conditions. Thus, it is necessary to develop a low-cost evaluation technology for compressor condition monitoring and efficiency analysis to ensure that the compressor is always driven at the optimum efficiency without imposing undue burden on the compressor user. In this study, a sensor was installed at the inlet, outlet, and power supply of the compressor, and a method for evaluating the energy consumption of the compressor using the minimum sensor was derived. The experimental results are presented to show the validity of the proposed method. It was confirmed that the energy consumption of the compressor can be easily as well as efficiently evaluated by using the method developed in this study.

Developing an Energy Consumption Model of Household Unit in Rural Area (농촌지역 농가 에너지소비 모델 개발)

  • Rhee, Shin-Ho;Wang, Jun;Yoon, Seong-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.99-109
    • /
    • 2008
  • As the price of traditional fossil fuels continue to increase, more people attach importance to the pollution of the environment caused by fossil fuel's burning, developing and using renewable energy resources has become a very important project all over the world. Also, the rural energy planning which is another method to improve energy utilization ratio and reduce environment pollution, is also regarded as a very effective way to reduce the energy consumption. There is a quantity of renewable energy resources and natural tribes in rural area, which is both feasible to develop the renewable energy and the regional energy planning. To carry out this, it is needs to know the area's quantity of renewable energy resources and the total energy consumption. This paper is to find out the relationship between rural energy consumption and rural conditions, and to found a energy consumption model which can conjecture the energy consumption in rural family. and the cost of rural family's energy consumption was founded to conjecture how much money dose it cost in rural family's energy consumption. The energy consumption model was concluded using the surveys of 76 families in 14 villages at the area of Chungcheongbuk-Do(province). The main factors to energy consumption was selected out which were number of family members, acreage of house, acreage of farmland and family's annual income.

Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings (ICT를 활용한 병원건물의 에너지 절감방안 연구)

  • Lee, Junghwan;Han, Youngdo;Kim, Dongwook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.422-430
    • /
    • 2018
  • Increase in oil prices and building energy consumption has been a great burden for Korea which has significant energy dependence on foreign energy sources. In this context, reduction of building energy consumption, which comprises 40% of total energy consumption, is a very important issue. This research therefore empirically analyzed a hospital "P" that implemented ICT-based energy consumption and cost reduction initiative. The hospital first replaced existing water absorber for heating/cooling air and boiler for heating water with water heat storage heat pump system. This was accompanied by subscribing to different electricity price plans to maximize cost reduction. Secondly, the hospital additionally applied ICT-based optimized control algorithm that considers surrounding factors (external temperature, changes in energy demand). The analysis of these mechanisms indicate that the ICT-based energy consumption and cost reduction initiative for hospitals can reduce energy consumption by 53.6% with replacement of low-efficiency equipment and additionally by 18.2% with optimized control algorithm. The mechanisms will provide energy consumption reduction opportunities for other hospitals and buildings with high energy consumption.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Policy research and energy structure optimization under the constraint of low carbon emissions of Hebei Province in China

  • Sun, Wei;Ye, Minquan;Xu, Yanfeng
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • As a major energy consumption province, the issue about the carbon emissions in Hebei Province, China has been concerned by the government. The carbon emissions can be effectively reduced due to a more rational energy consumption structure. Thus, in this paper the constraint of low carbon emissions is considered as a foundation and four energies--coal, petroleum, natural gas and electricity including wind power, nuclear power and hydro-power etc are selected as the main analysis objects of the adjustment of energy structure. This paper takes energy cost minimum and carbon trading cost minimum as the objective functions based on the economic growth, energy saving and emission reduction targets and constructs an optimization model of energy consumption structure. And empirical research about energy consumption structure optimization in 2015 and 2020 is carried out based on the energy consumption data in Hebei Province, China during the period 1995-2013, which indicates that the energy consumption in Hebei dominated by coal cannot be replaced in the next seven years, from 2014 to 2020, when the coal consumption proportion is still up to 85.93%. Finally, the corresponding policy suggestions are put forward, according to the results of the energy structure optimization in Hebei Province.

Development of a New Load Management System Package for Optimal Electricity Consumption Strategy in a Competitive Electricity Market (경쟁적 전력시장에서의 최적 부하소비전략 수립을 위한 새로운 부하관리시스템 패키지 개발)

  • 정구형;이찬주;김진호;김발호;박종배
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.187-197
    • /
    • 2004
  • This paper presents a window-based load management system (LMS) developed as a decision-making tool in the competitive electricity market The developed LMS can help the users to monitor system load patterns, analyze their past energy consumption and schedule for the future energy consumption. The LMS can also provide the effective information on real-time energy/cost monitoring, consumed energy/cost analysis, demand schedule and cost-savings. Therefore. this LMS can be used to plan the optimal demand schedule and consumption strategy.

Energy-efficient Multicast Algorithm for Survivable WDM Networks

  • Pu, Xiaojuan;Kim, Young-Chon
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.315-324
    • /
    • 2017
  • In recent years, multicast services such as high-definition television (HDTV), video conferencing, interactive distance learning, and distributed games have increased exponentially, and wavelength-division multiplexing (WDM) networks are considered to be a promising technology due to their support for multicast applications. Multicast survivability in WDM networks has been the focus of extensive attention since a single-link failure in an optical network may result in a massive loss of data. But the improvement of network survivability increases energy consumption due to more resource allocation for protection. In this paper, an energy-efficient multicast algorithm (EEMA) is proposed to reduce energy consumption in WDM networks. Two cost functions are defined based on the link state to determine both working and protection paths for a multicast request in WDM networks. To increase the number of sleeping links, the link cost function of the working path aims to integrate new working path into the links with more working paths. Sleeping links indicate the links in sleep mode, which do not have any working path. To increase bandwidth utilization by sharing spare capacity, the cost function of the protection path is defined to use sleeping fibers for establishing new protection paths. Finally, the performance of the proposed algorithm is evaluated in terms of energy consumption, and also the blocking probability is evaluated under various traffic environments through OPNET. Simulation results show that our algorithm reduces energy consumption while maintaining the quality of service.

A Fault Tolerant Data Management Scheme for Healthcare Internet of Things in Fog Computing

  • Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.