• Title/Summary/Keyword: energy collecting

Search Result 309, Processing Time 0.201 seconds

A study on hybrid solar LED street light system (하이브리드 태양광 LED 가로등 시스템 연구)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.20-25
    • /
    • 2022
  • In line with the rapid economic growth of many countries, fossil fuel energy sources are also rapidly depleting. Therefore, the price is also rising rapidly, so it is necessary to develop new and renewable energy sources such as hydropower, geothermal power, nuclear power, wind power and solar energy to replace fossil fuel energy in the future. In this study, development of rotating concentrator module system, development of rotating module control control system, development of lamp and charge control controller, configuration and prototype production of rotating concentrating solar LED street light system, efficiency of rotating concentrating solar LED street light, and power production. The research was conducted in the order of evaluation of comprehensive performance tests such as consumption and consumption. As a result, the developed high-efficiency rotation-concentrating hybrid solar LED street light module system has a 50% higher light-gathering efficiency than existing products by tracing sunlight by self-developing a rotation-collecting module on existing solar LED street lamps according to the characteristics of Korea's topography. and the power generation was improved by more than 40%.

Forecasting Energy Consumption of Steel Industry Using Regression Model (회귀 모델을 활용한 철강 기업의 에너지 소비 예측)

  • Sung-Ho KANG;Hyun-Ki KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.2
    • /
    • pp.21-25
    • /
    • 2023
  • The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea (국내 태양광자원의 성분 및 파장별 분석에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

A Study on the Characteristics of Horizontal Global Insolation Distribution in Korea (국내 수평면 전일사량 자원의 분포특성 분석)

  • Jo, D.K.;Chun, I.S.;Lee, S.M.;Lee, T.K.;Kang, Y.H.;Auh, C.M.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.19-30
    • /
    • 2000
  • Since the solar radiation is the main input for sizing any solar system, it will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has began collecting horizontal global insolation data since May, 1982 at 16 different locations. Because of a poor reliability of existing data, KIER's new data will be extensively used by solar system users as well as by research institutes. From the results, we can conclude that 1) The yearly averaged horizontal global insolation of Korea was turned out $3,042kcal/m^2.day$ in the periods of $1982\sim1999$. 2) Horizontal global insolation of spring and summer were 24 % and 21 %, higher than the yearly average value, respectively, and for fall and winter, their values were 12 % and 34 % lower than the yearly average value, respectively.

  • PDF

A Revaluation of Direct Normal Insolation Data by Field Measurement in Korea (실측에 의한 국내 법선면 직달일사량 자원의 재평가)

  • Jo, D.K.;Chun, I.S.;Lee, S.M.;Lee, T.K.;Kang, Y.H.;Auh, C.M.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.31-42
    • /
    • 2000
  • Since the direct normal insolation is a main factor for designing any focusing solar system, it is necessary to evaluate its characteristics all over the country. We have begun collecting direct normal insolation data since December 1990 at 16 different locations and considerable effort has been made for constructing a standard value from measured data at each station. KIER(Korea Institute of Energy Research)'s new data will be extensively used by concentrating system users or designers as well as by research institutes. From the results, we can conclude that 1) Yearly mean $4,576kcal/m^2.day$ of the direct normal insolation was evaluated for clear day all over 16 areas in Korea. 2) Clear day's direct normal insolation of spring and summer were $4,710kcal/m^2.day$ and $4,960kcal/m^2.day$, and for fall and winter their values were $4,484kcal/m^2.day$ and $4,151kcal/m^2.day$ respectively. So, spring and summer were higher, and fall and winter were lower than the yearly mean value.

  • PDF

Analysis of Efficiency of Solar Hot Water System based on Energy Demand (에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석)

  • Jun, Yong-Joon;Park, Kyung-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.

Estimation of Solar Radiation Distribution in Korea Using a Satellite (인공위성을 이용한 국내 일사량 분포 예측)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system, it is essential to utilize the solar radiation data as an application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth"s surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.56 kWh/ $m^2$/day and estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.27 to +3.65% from the measured values.

Un-Cooled High Efficient Solar Lighting System and its Application (비냉각형 고효율 태양광 채광시스템 및 응용에 관한 연구)

  • Lee, Hoe-Youl;Kim, Myoung-Jin;Shin, Seo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1394-1402
    • /
    • 2011
  • This paper describes solar light collecting system which employs parabolic reflector and Fresnel lens and its industrial application. We have introduced second-stage optical system so that it makes optical fiber overcome its numerical aperture limitation and also it makes focused light become collimated, which results in decreased light energy density. As result of these, light collecting efficiency become maximized and the system does not require separate cooling apparatus any more. The developed solar lighting system together with artificial light source like LED has been applied to plant factory as a hybrid lighting source. This makes us save electric energy for artificial lighting during day time. The intensity of LED light in the hybrid lighting system is controlled automatically according to ambient-light-sensor installed in the system so that the light intensity for a plant always keeps the same level no matter how the sun light changes. For a plant factory whose size is 330 square meters, when solar lighting system is applied, 28,080KWh electric energy can be saved per month.2 times.