• Title/Summary/Keyword: energy collecting

Search Result 309, Processing Time 0.032 seconds

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

The Method of Quantitative Analysis Based on Big Data Analysis for Explanatory Variables Containing Uncertainty of Energy Consumption in Residential Buildings - Focused on Apartment in Seoul Korea (주거용 건물의 에너지 실사용량의 불확실성을 내포한 설명변수 인자에 대한 빅데이터 분석 기반의 정량화 방법 - 서울지역의 공동주택을 중심으로)

  • Choi, Jun-Woo;Ahn, Seung-Ho;Park, Byung-Hee;Ko, Jung-Lim;Shin, Jee-Woong
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.75-81
    • /
    • 2017
  • Purpose: The energy consumption of apartment units is affected by the lifestyle of the residents rather than system technology. In this study the numerical analysis of assumed energy consumption correlation factors with arbitrary value due to uncertainty. It is intended to be used as a simulation correction value which can be utilized as a predicted value of actual energy usage. The correction value of the simulation is set in the developed form of the existing process that derives the actual usage amount. The simulation results used in the existing evaluation system are used to maintain the useful value as the current system evaluation scale and predict the actual capacity. Method: The method of the study is to statistically analyze the data frames of all complexes capable of collecting the annual energy usage and to reconstruct the population by adding the variables that are expected to be correlated. Repeat the data frame configuration with variables that are assumed to be highly correlated with energy use levels. Determine whether there is correlation or not. The intensity of the external characteristics of the building equipment related to the energy consumption is presented as the quantitative value. Result: The correlation between electricity consumption and trading price since 2010 is analyzed as (Correlation coefficient 0.82). These results are higher than (Correlation coefficient 0.79), which is the correlation between residential area and trading price. This paper signifies the starting point of the methodology that broadens the field of view of verification of simulation feasibility limited to the prediction technique focused on the simulation tool and the element technology scope.The diversified phenomenon reproduction method develops the existing energy simulation method.It can be completed with a simulation methodology that can infer actual energy consumption.

Optimal Operation Methods of the Seasonal Solar Borehole Thermal Energy Storage System for Heating of a Greenhouse (온실난방을 위한 태양열 지중 계간축열시스템의 최적 운전 방안)

  • Kim, Wonuk;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2019
  • Solar energy is one of the most abundant renewable energy sources on Earth but there are restrictions on the use of solar thermal energy due to the time-discrepancy between the solar-rich season and heating demand. In Europe and Canada, a seasonal solar thermal energy storage (SSTES), which stores the abundant solar heat in the summer and uses the heat for the winter heating load, is used. Recently, SSTES has been introduced in Korea and empirical studies are actively underway. In this study, a $2,000m^2$ flat plate type solar collector and $20,000m^2$ of borehole thermal energy storage (BTES) were studied for a greenhouse in Hwaseong City, which has a heating load of 2,164 GJ/year. To predict the dynamic performance of the system over time, it was simulated using the TRNSYS 18 program, and the solar fraction of the system with the control conditions was investigated. As a result, the solar BTES system proposed in this study showed an average solar fraction of approximately 60% for 5 years when differential temperature control was applied to both collecting solar thermal energy and discharging BTES. The proposed system simplified the configuration and control method of the solar BTES system and secured its performance.

Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators (국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석)

  • Lim, Hyungwoo;Kim, Jaehyeok;Shin, Donghyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.557-579
    • /
    • 2021
  • Collective energy is an intermediate stage in energy conversion and has a great influence on the power structure as a distributed power source. However, the problem of the collective energy business has recently emerged due to the worsening profitability of some collective energy operators. This study measured the technical efficiency of major operators through the estimation of the production efficiency of Korean collective energy operators, and based on this, we looked at ways to improve the profit structure of operators. After collecting detailed data from 16 collective energy operators between 2016 and 2019, the production efficiency of operators was estimated using the panel stochastic frontier model. As a result of the estimation, combined steam power operators showed the highest production efficiency and reverse CHP operators showed the lowest efficiency. Furthermore, as a result of examining the factors influencing profitability, it was confirmed that production efficiency has a positive effect on overall profitability. However, businesses with a high proportion of heat production, such as small district electricity operators, profitability was lower. This phenomenon is due to the structural limitations of the current heat sales market. Hence, the adjustment of the heat sales unit price is necessary to improve profitability of collective energy operators.

Technical Analysis of an MRV System in Relation to the Implementation of a Data Collection System by the International Maritime Organization (국제해사기구 데이터수집시스템 도입에 따른 MRV 지원시스템의 기술적 분석)

  • Kang, Nam-seon;Lee, Jung-yup;Hong, Yeon-jeong;Byeon, Sang-su;Kim, Jin-yhyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2017
  • This study presents the results from a technical analysis of a portal system that is compatible with MRV regulations and utilized to examine energy efficiency in international shipping, in relation to the implementation of a mandatory data collection system by the International Maritime Organization. The details of the SEEMP guidelines, including the data collection system and methods for collecting data on fuel use, were reviewed. Strategies for domestic shipping companies toward MRV have been recommended by identifying differences with the EU MRV, and the technical adequacy of the MRV system was assessed. The MRV system enhances cost and work efficiency by managing emissions data from the early stage to the final stage. It is capable of collecting and reporting emissions data while adhering to the reporting procedures of shipping companies. By granting different access privileges to users, the system supports shipping companies in their data collection and reporting, and also supports verifiers in their data verification activities. Moreover, it makes possible the submission of reports in electronic from, thereby enabling shipping companies to adopt an integrated response to international MRV regulations.

Development of Classification Method for Anthracite and CO2 Emission Factor to Improve the Quality of National GHG Inventory (국가 온실가스 인벤토리 품질 향상을 위한 무연탄 분류 방법 및 배출계수 개발)

  • Kim, Seungjin;Lee, Jeongwoo;Lee, Seehyung;Sa, Jae-Hwan;Choi, Bong-Suk;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this study, the anthracite coal being used as fuel in Korea were classified into different types. These types include the domestically produced anthracite, imported anthracite used as raw material, and imported anthracite used as fuel. Each of the calorific values and greenhouse gas emission factors were calculated. The calculation of greenhouse gas emission factors resulted in the domestically produced anthracite as $111,477{\pm}4,508kg\;CO_2/TJ$, the imported anthracite used as raw material as $108,358{\pm}4,033kg\;CO_2/TJ$, and anthracite used as fuel was displayed as $103,927{\pm}8,367kg\;CO_2/TJ$. Additionally, the amount of greenhouse gas emission based on these calculated emission factors was displayed as $6,216,942ton\;CO_2$, which resulted as 12.7% lower than the green house gas emission amount which was calculated without distinguishing anthracite coal in details. Therefore, collecting activity data through a detailed classification of anthracites facilitate a more accurate calculation of greenhouse gas emission amount compared to collecting activity data through combination. Furthermore, since the anthracite coal used domestically possesses characteristics differing from the anthracite coal proposed by the IPCC, anthracite coal should be classified for each purpose and calculated for the improvement of the national greenhouse gas inventory.

Physical and Chemical Characteristics of Oilsands Bitumen Using Vacuum Distillation (감압증류장치를 이용한 Oilsands Bitumen의 물리화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Roh, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study was carried out to investigate physical and chemical characteristics of the distillates and residue of Athabasca oilsand bitumen obtained from Canada, using a vacuum distillation unit. The distillates and residue produced from the vacuum distillation were characterized through atomic analysis, SARA analysis, and measurement of boiling point distribution, molecular weight, and API gravity. The vacuum distillation equipment consisted of a 6-litter volume vessel, a glass-packed column, a condenser, a reflux device, a flask fer collecting distillates, and a temperature controller. The cutting of distillates was performed with four steps under the condition of full vacuum and maximum temperature of $320^{\circ}C$. The results showed that the sulfur amount and average molecular weight of the distillates were significantly reduced compared to those of oilsand bitumen. As the cutting temperature increased, the hydrogen amount decreased but the sulfur amount and average molecular weight increased in the distillates.

Development of an intelligent IIoT platform for stable data collection (안정적 데이터 수집을 위한 지능형 IIoT 플랫폼 개발)

  • Woojin Cho;Hyungah Lee;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2024
  • The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.

Data transfer Rate of the Wireless Node Moving in the Static Wireless Network Space (고정 무선네트워크 공간 내에서의 무선노드 이동시 데이터 전송률)

  • Lee, Cheol;Lee, Jung-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.941-948
    • /
    • 2016
  • In this paper, we efficiently simulated for collecting the data from the fixed sensor and mobile sensor of patients using the LEACH-Mobile method. The LEACH-Mobile method is the protocol to increase the mobility by adding the mobile node to the existed LEACH(:Low Energy Adaptive Clustering Hierarchy) protocol. It improves the mobility of The LEACH-Mobile in the LEACH, however it consumes more energy than the existed LEACH. There is reason why we use the LEACH-Mobile that the monitoring system is generally done by the CCTV and an periodic checkup by nurses. However the number of nurse is a few in the most of hospital. It can happen the accidents of the patients in out of the CCTV when the nurse can not see the monitoring system in the hospital. Therefore it is simulated to continuously gather the data of the position and sensors in the five situation of moving the patients in the hospital, it gets the result that the management of the mobile patients is more efficient.

A study about flat mirror type solar thermal generation system to independently supply electricity on water resources management system (수자원 관리 시스템 독립 전력공급을 위한 평판형 태양열 발전 시스템 기초구현방안 연구)

  • Lee, Sang-Hun;Seo, Tae-Il;Jung, Seung-Kwon;Gwon, Yong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5067-5073
    • /
    • 2015
  • Recently, various researches about water resources management system have been conducted in order to handle many problems, for example, climate change can provoke rapid change of water circulation, continuous population increase, population concentration phenomenon and so on. For population concentration region, many researches about water resources management system have been carried out, but many regions far away from civilization have not been handled as research topics. Especially these regions always need electricity supply infra, but significant costs will be required to construct the infra. Therefore this paper presents a methodology in order to generate the electricity from new renewable energy resources and supply the electricity into these region. For this, solar thermal generation system was experimentally studied. Moreover, this solar power generation system was considered as an important component to establish an ESS (Energy Storage System).