• Title/Summary/Keyword: energy based methods

Search Result 2,350, Processing Time 0.029 seconds

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Suggestion of PV Module Test Methods Based on Weathering Monitoring (기후데이터 분석을 통한 태양광모듈의 내구성 평가 기준 제안)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.46-50
    • /
    • 2019
  • The photovoltaic (PV) system consists of solar cells, solar modules, inverters and peripherals. The related evaluation and certification are proceeding as standards published by the IEC (International Electrotechnical Commission) TC (Technical Committee) 82. In particular, PV module is a component that requires stable durability over 20 years, and evaluation in various external environments is very important. Currently, IEC 61215-based standards are being tested, but temperature, humidity, wind and solar radiation conditions are not considered in all areas. For this reason, various types of defects may occur depending on the installation area of the same photovoltaic module. In particular, the domestic climate (South Korea) is moderate. The various test methods proposed by IEC 61215 are appropriate, excessive, or insufficient, depending on environmental condition. In this paper, we analyze the climate data collection for one year to understand the vulnerability of this test method of PV modules. Through this, we propose a test method for PV module suitable for domestic climatic conditions and also propose a technical consideration for installation and design of PV system.

Multi-criteria Comparative Evaluation of Nuclear Energy Deployment Scenarios With Thermal and Fast Reactors

  • Andrianov, A.A.;Andrianova, O.N.;Kuptsov, I.S.;Svetlichny, L.I.;Utianskaya, T.V.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.47-58
    • /
    • 2019
  • The paper presents the results of a multi-criteria comparative evaluation of 12 feasible Russian nuclear energy deployment scenarios with thermal and fast reactors in a closed nuclear fuel cycle. The comparative evaluation was performed based on 6 performance indicators and 5 different MCDA methods (Simple Scoring Model, MAVT / MAUT, AHP, TOPSIS, PROMETHEE) in accordance with the recommendations elaborated by the IAEA/INPRO section. It is shown that the use of different MCDA methods to compare the nuclear energy deployment scenarios, despite some differences in the rankings, leads to well-coordinated and similar results. Taking into account the uncertainties in the weights within a multi-attribute model, it was possible to rank the scenarios in the absence of information regarding the relative importance of performance indicators and determine the preference probability for a certain nuclear energy deployment scenario. Based on the results of the uncertainty/sensitivity analysis and additional analysis of alternatives as well as the whole set of graphical and attribute data, it was possible to identify the most promising nuclear energy deployment scenario under the assumptions made.

Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas (합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사)

  • Jang, Seon-Ki;Park, No-Kuk;Lee, Tae-Jin;Koh, Dong-Jun;Lim, Hyo-Jun;Byun, Chang-Dae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.

Technology Assessment of the Repository Alternatives to Establish a Reference HLW Disposal Concept

  • Choi, Jong-Won;Choi, Young-Sung;Kwon, Sang-Ki;Kuh, Jung-Eui;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-100
    • /
    • 1999
  • As disposal packaging concepts of spent fuels generated from the domestic NPP, two types, one is to package PWR and CANDU spent fuels in different containers and the other is to package them together, were proposed. The configuration of the containers and the layout of underground repository, such as the container spacing and the deposition tunnel spacing, were developed. The layout of underground repository satisfies the thermal constraint of the bentonite buffer surrounding disposal container, which should be lower than $100^{\circ}C$ in order to keep the physical and chemical properties of bentonite From the spent fuel packaging concepts and container emplacement methods, seven options were developed. With a typical pair-wise comparison methods, AHP, the most promising disposal concept was selected based on the technology Point of view.

  • PDF

The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment (기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구)

  • Kim, Seohoon;Kim, Jonghun;Yoo, Seunghwan;Jeong, Hakgeun;Song, Kyoodong
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Methods to Characterize the Thermal Stratification in Thermal Energy Storages (열에너지 저장소 내 열성층화를 평가하기 위한 기법)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF