• Title/Summary/Keyword: energy based methods

Search Result 2,373, Processing Time 0.052 seconds

Performance Analysis of an Energy Detection Based Cooperative Spectrum Sensing with Double Thresholds in the Presence of Noise Uncertainty (잡음 전력의 불확실성이 존재하는 환경에서 이중 임계값을 사용하는 에너지 검파 기반 협력 스펙트럼 감지의 성능 분석)

  • Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • An energy detection based spectrum sensing is widely known to be susceptible to the noise power uncertainty. As one of the methods to resolve this problem, a cooperative spectrum sensing based on an energy detector with double thresholds has been published recently. However, its performance analysis under a fading channel has not been carried out yet. In this paper, we present a closed form of performance analysis of the scheme by extending our previous work on evaluating the performance of an energy detector in the presence of noise power uncertainty.

Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure

  • Kim, Younghak;Lee, Wonho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Background: Cadmium zinc telluride (CZT) is a promising material because of a high detection efficiency, good energy resolution, and operability at room temperature. However, the cost of CZT dramatically increases as its size increases. In this study, to achieve a large effective volume with relatively low cost, an array structure comprised of individual virtual Frisch-grid CZT detectors was proposed. Materials and Methods: The prototype consisted of 2 × 2 CZTs, a holder, anode and cathode printed circuit boards (PCBs), and an application-specific integrated circuit (ASIC). CZTs were used and the non-contacting shielding electrode method was applied for virtual Frisch-grid effect. An ASIC was used, and the holder and the PCBs were fabricated. In the current system, because the CZTs formed a common cathode, a total of 5 channels were assigned for data processing. Results and Discussion: An experiment using 137Cs at room temperature was conducted for 10 minutes. Energy and timing information was acquired and the depth of interaction was calculated by the timing difference between the signals of both electrodes. Based on obtained three-dimensional position information, the energy correction was carried out, and as a result the energy spectra showed the improvements. In addition, a Compton image was reconstructed using the iterative method. Conclusion: The virtual Frisch-grid CZT detector based on the array structure was developed and the energy spectra and the Compton image were successfully acquired.

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Research on Hot-Threshold based dynamic resource management in the cloud

  • Gun-Woo Kim;Seok-Jae Moon;Byung-Joon Park
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.471-479
    • /
    • 2024
  • Recent advancements in cloud computing have significantly increased its importance across various sectors. As sensors, devices, and customer demands have become more diverse, workloads have become increasingly variable and difficult to predict. Cloud providers, connected to multiple physical servers to support a range of applications, often over-provision resources to handle peak workloads. This approach results in inconsistent services, imbalanced energy usage, waste, and potential violations of service level agreements. In this paper, we propose a novel engine equipped with a scheduler based on the Hot-Threshold concept, aimed at optimizing resource usage and improving energy efficiency in cloud environments. We developed this engine to employ both proactive and reactive methods. The proactive method leverages workload estimate-based provisioning, while the reactive Hot-Cold Scheduler consists of a Predictor, Solver, and Processor, which together suggest an intelligent migration flow. We demonstrate that our approach effectively addresses existing challenges in terms of cost and energy consumption. By intelligently managing resources based on past user statistics, we provide significant improvements in both energy efficiency and service consistency.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Energy Performance Evaluation of a New Commercial Building using Calibrated As-built Simulation with Monitoring Data (건물에너지 모니터링 및 시뮬레이션을 활용한 신축건물의 에너지성능평가)

  • Song, Su-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.155-166
    • /
    • 2008
  • The performance evaluation of a new building is becoming more important because efficient design alone is often not sufficient to deliver an efficient building. However, there is a lack of standard evaluation methods to measure the energy performance of a new construction that has Energy Conservation Design Measures(ECDMs). This study presents an enhanced method based on calibrated whole-building simulation for evaluating the energy performance of new commercial buildings and demonstrates its use using a case-study building, including: an Energy Use Index(EUI) comparison with sub-metered data and an evaluation of the performance of specific ECDMs. The use of this method has determined that the case-study building was shown to use approximately 47% less energy than the base-case building that has the same shape and function as the case-study building(i.e., calibrated as-built simulation mode]), but doesn't include the simulated ECDMs.