• Title/Summary/Keyword: energy balancing

Search Result 298, Processing Time 0.028 seconds

Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

  • Daoud, Mohamed;Elserougi, Ahmed;Massoud, Ahmed;Bojoi, Radu;Abdel-Khalik, Ayman;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.714-726
    • /
    • 2019
  • This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

Online DCIR Estimation for Series-connected Battery Cells using Matrix-Switched Capacitor Converter

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.381-382
    • /
    • 2020
  • In the battery energy storage system, battery cells are connected in series to increase the operating voltage. Due to the difference in characteristics, the performance degradation of cells is dissimilar. This paper proposes an online DC internal impedance estimation for battery cells in the series string using a matrix-switched capacitor converter, which is already verified as useful for the series balancing of the cells. The simulation in the hardware in the loop test rig shows good accuracy and the feasibility of the proposed method.

  • PDF

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

A Study on the Individual Room Control of Radiant Floor Heating System in Apartment Buildings (공동주택에서 바닥복사 난방시스템의 실별 제어에 관한 연구)

  • 김오봉;이미경;김광우;여명석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.421-429
    • /
    • 2004
  • In Korea, the radiant heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. According to the recent improvement of living standard of residential buildings, the requirement of the thermal comfort and energy saving in heating system has been raised. Until now, the radiant floor heating system has been controlled by room thermostat installed in the living room, but for better thermal comfort, an individual room control method is adopted as an alternative. Therefore, it is necessary to evaluate the control performance between the current control method and the individual room control method. In this study, the control performance between the two systems is evaluated through the field experiment. And the control performances of room air temperature and energy performances are analyzed through the simulation using TRNSYS. Firstly, the simulations are performed in the various outdoor conditions and the flow rates and the simulation results are analyzed for the control performances. Also, to evaluate the energy performance, the simulations are performed under the operating conditions in which the set-point of the room air temperature is fixed or changed according to the schedule of occupancy, and the simulation results are analyzed between the two methods.

Primary cilia in energy balance signaling and metabolic disorder

  • Lee, Hankyu;Song, Jieun;Jung, Joo Hyun;Ko, Hyuk Wan
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.647-654
    • /
    • 2015
  • Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

An asymptotic analysis of the Taylor-Proudman flow in a rapidly-rotating compressible fluid (압축성 회전유체에서 발생하는 Taylor-Proudman 유동에 대한 점근해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.341-344
    • /
    • 2002
  • A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small. The conditions for the Taylor-Proudman column in the interior, which were also given in the companion paper Park & Hyun, 2002) by means of the energy balancing analysis, have been re-derived. The concept of the variable, the energy content $e[{\equiv}T+2 {\alpha}^2 {\gamma}{\nu}]$, is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist with an associated wail boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions. The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content. The results are shown to be in line with the previous findings.

  • PDF

Aircraft Sizing Methods for the Design of an Electrically Propelled Aircraft (전기추진 항공기 설계를 위한 사이징 방법 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.590-600
    • /
    • 2012
  • In this research, generalized sizing methods were studied that can be applied to an aircraft which uses solar cell or fuel cell as energy sources. To consider multiple propulsion systems and energy resources, multiple power paths were modeled and the weight of consumable and non-consumable energy was reflected in the weight change calculation for each mission segments. In the constraint analysis, power to weight ratio was selected instead of thrust to weight ratio and used in the sizing process of balancing power and energy.

Temporary Access Selection Technology in WIFI Networks

  • Lu, Yang;Tan, Xuezhi;Mo, Yun;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4269-4292
    • /
    • 2014
  • Currently, increasing numbers of access points (AP) are being deployed in enterprise offices, campuses and municipal downtowns for flexible Internet connectivity, but most of these access points are idle or redundant most of the time, which causes significant energy waste. Therefore, with respect to power conservation, applying energy efficient strategies in WIFI networks is strongly advocated. One feasible method is dynamically managing network resources, particularly APs, by powering devices on or off. However, when an AP is powered on, the device is initialized through a long boot time, during which period clients cannot be associated with it; therefore, the network performance would be greatly impacted. In this paper, based on a global view of an entire WLAN, we propose an AP selection technology, known as Temporary Access Selection (TAS). The criterion of TAS is a fusion metric consisting of two evaluation indexes which are based on throughput and battery life, respectively. TAS is both service and clients' preference specific through balancing the data rate, battery life and packet size. TAS also works well independently in traditional WLANs in which no energy efficient strategy is deployed. Moreover, this paper demonstrates the feasibility and performance of TAS through experiments and simulations with Network Simulator version 3 (NS3).

An Energy Efficient Cluster-head Selection Algorithm Using Head Experience Information in Wireless Sensor Networks (무선 센서 네트워크환경에서 헤드 경험정보를 이용한 에너지 효율적인 클러스터 헤드 선정 알고리즘)

  • Kim, Hyung-Jue;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.608-614
    • /
    • 2009
  • In wireless sensor networks, there are hundreds to thousands of small battery powered devices which are called sensors. As sensors have a limited energy resources, there is a need to use it effectively. A clustering based routing protocol forms clusters by distributed algorithm. Member nodes send their data to their cluster heads then cluster heads integrate data and send to sink node. In this paper we propose an energy efficient cluster-head selection algorithm. We have used some factors(a previous cluster head experience, a existence of data to transmit and an information that neighbors have data or not) to select optimum cluster-head and eventually improve network lifetime. Our simulation results show its effectiveness in balancing energy consumption and prolonging the network lifetime compared with LEACH and HEED algorithms.