• Title/Summary/Keyword: energy application

Search Result 6,190, Processing Time 0.032 seconds

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Current Status of Legal Regulations Regarding Gas- and Moisture-removing Active Packaging for Food: A Review (식품용 가스 및 수분 제거 활성포장 사용 및 법정 규정에 대한 현황)

  • Kim, Dowan;Oh, Jae-Min;Lee, Soonho;Kim, Hyun-Ah;Hwang, Joungboon;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Due to the increasing consumer demands for the safety, shelf life, and quality of food, the application and development of active packaging in the food and packaging industry have been improved. According to the standards and specifications of the Republic of Korea for utensils, containers, and packages, the function of active packaging is to remove or alleviate factors that degrade food quality. Although extensive reviews regarding the development and commercialization of active packaging have been conducted, the legal regulations and safety assessments concerning active packaging have rarely been examined. This review provides information regarding the definition, structure, components, operational mechanisms, and applications for active packaging that actively removes oxygen, moisture, carbon dioxide, and ethylene. Furthermore, the legal regulations and research results related to the development of test methods for safety assessments of active packaging are investigated.

Effect of Exogenous Metalaxyl Seed-Soaking on Root Initiation and Elongation of Young Rice Seedling (벼 어린모 뿌리의 분화 및 신장에 미치는 Metalaxyl의 종자침청처리 효과)

  • Kim, Je-Kyu;Park, Kwng-Ho;Lee, Moon-Hee;Oh, Yun-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.6
    • /
    • pp.545-553
    • /
    • 1993
  • The metalaxyl seed-soaking treatment markedly increased the root-mat formation of the young rice seedling(8- to l0-day-old) for machine transplanting. This experiment was conducted to find out a possible rooting mechanism of the young rice seedling in relation to the exogenous metalaxyl seed-soaking treatment. The rice seeds of Hwaseongbyeo variety were soaked in the solution of metalaxyl for 24 hours at room temperature. Metalaxyl(25% wettable powder), a fungicide, was used at the concentration of 200ppm as a promoting substance on the root-mat formation of the young rice seedling. Seeding rate of the young rice seedling was 220g per seed tray(30${\times}$60${\times}$depth 3cm). Metalaxyl seed treatment was highly effective in root initiation and elongation of the young rice seedling in terms of root activity, the number and length of root, and amino acid content of roots. The exogenous metalaxyl application would also increase the chlorophyll content and photosynthetic rate in the young rice seedling. Those factors resulted in vigorous root-mat formation of the young rice seedling. In particular, alanine is a lead compound of metalaxyl which biochemically plays an important role in energy intermediate of the rice plant. Alanine conjugation with a glucose (N-${\beta}$-glucoside) is probably the mechanism in enhancement of initiation and elongation of rice roots of young rice seedling.

  • PDF

Study on Verification of Applicability for a Warehouse Construction Site using a Fire Risk Assessment Tool (화재위험도 평가 Tool에 의한 물류창고 공사장 적용성 검증에 관한 연구)

  • YongGoo Seo;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.673-688
    • /
    • 2023
  • Purpose: Fires that occur during construction are infrequent, but cause great damage. Recently, with the growth of the logistics and distribution industry, the number of construction sites for new logistics warehouses is increasing, so it was selected as a research subject and research was conducted to reduce accidents at construction sites through the development of a fire risk assessment tool to quantitatively approach fire prevention. Method: A comprehensive fire risk assessment tool was accumulated by classifying the work in progress, classifying combustibles and ignition sources by grade, excluding air (oxygen), which is difficult to control, and additionally substituting evacuation safety. Result: Using the developed and proposed fire risk evaluation tool, excavation work with low fire risk, facility construction with medium fire risk, and finishing work with high fire risk were sampled to derive the result (CGI). Conclusion: In this study, it was possible to establish specific preventive measures and evaluate evacuation safety by controlling physical conditions (combustibles) and energy conditions (ignition sources) according to the risk assessment by developing a tool that can evaluate the risk of 14fire occurrence at construction sites. It is expected that in the future, through the application of the fire risk evaluation tool at construction sites, it will be provided as a criterion for establishing a process plan that can reduce risk and evaluating the adaptability of firefighting equipment.14

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.