• Title/Summary/Keyword: energy absorber

Search Result 407, Processing Time 0.027 seconds

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes (Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.424-430
    • /
    • 2009
  • Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.

Effect of thermal treatment on spray deposited CdTe thin films (스프레이 증착법을 이용한 CdTe박막의 열처리에 따른 특성 분석)

  • Lee, Jinyoung;Hwang, Sooyeun;Lee, Taejin;Ryu, Siok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • Polycrystalline CdTe thin films for solar cell continues to be a promising material for the development of cost effective and reliable photovoltaic processes. The two key advantages of this material are its high optical absorption coefficient and its near ideal band gap for photovoltaic conversion efficiency of 1.4-1.5 eV. In this study we made the CdTe thin films for solar cell application which was deposited on the glass substrates using a modified chemical spray method at low temperature. This process does not require the sophisticated and expensive vacuum systems. The prepared CdTe films were characterized with the aid of scanning electron microscope (SEM), UV-visible spectrophotometer, and X-ray diffraction spectrometer (XRD). Following are results of a study on the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Tehnology(MEST) and the National Research Foundation of Korea(NRF).

  • PDF

Selenization of CIG Precursors Using RTP Method with Se Cracker Cell

  • Kang, Young-Jin;Song, Hye-Jin;Cho, You-Suk;Yoon, Jong-Man;Jung, Yong-Deuk;Cho, Dea-Hyung;Kim, Ju-Hee;Park, Su-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.426-426
    • /
    • 2012
  • The CIGS absorber has outstanding advantages in the absorption coefficient and conversation efficiency. The CIGS thin film solar cells have been researched for commercialization and increasing the conversion efficiency. CIG precursors were deposited on the Mo coated glass substrate by magnetron sputtering with multilayer structure, which is CuIn/CuGa/CuIn/CuGa. Then, the metallic precursors were selenized under high Se pressure by RTP method which included. Se vapor was supplied using Se cracker cell instead of toxic hydrogen selenide gas. Se beam flux was controlled by variable reservoir zone (R-zone) temperature during selenization process. Cracked Se source reacted with CIG precursors in a small quantity of Se because of small size molecules with high activation energy. The CIGS thin films were studied by FESEM, EDX, and XRD. The CIGS solar cell was also developed by layering of CdS and ZnO layers. And the conversion efficiency of the CIGS solar cell was characterization. It was reached at 6.99% without AR layer.

  • PDF

Effects of Heat Treatment in $N_2$ and Se Atmosphere on the Densification of Nanoparticle Derived Cu(In, Ga)$Se_2$ Absorber Layer (질소 및 셀레늄 분위기 열처리가 나노 입자 Cu(In, Ga) $Se_2$ 광흡수층의 치밀화에 미치는 영향)

  • Kim, Ki-Hyun;Ahn, Se-Jin;Chun, Young-Gab;Park, Byun-Ok;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.185-188
    • /
    • 2005
  • 나노 입자 분무 기법을 이용한 $Cu(In,\;Ga)Se_2$ (CIGS) 광흡수층 제조 기법은 고진공 장치를 사용하지 않는다는 점에서 대면적 저가형 CIGS 태양전지 양산에 적합한 차세대 기술로 인식되고 있다. 그러나 일반적으로 스프레이 된 상태의 CIGS충 자체는 태양전지 제조에 적합하지 않은데 이는 스프레이 막의 다공성 구조 때문이다. 본 연구에서는 나노입자 분무 기법을 이용하여 증착한 CIGS 광흡수층막을 질소 또는 셀레늄 분위기에서 열처리함으로써 태양전지 제조에 적합한 치밀한 구조의 CIGS 광흡수충을 제조하고자 하였다. 실험 결과, 질소 분위기 $500^{\circ}C$의 온도에서 1시간 열처리하여도 CIGS 나노 입자의 성장은 거의 일어나지 않는 것으로 나타났다. 반면 셀레늄 분위기 $500^{\circ}C$의 온도에서 30분 열처리시 입자 크기가 $1{\mu}m$이상인 치밀한 광흡수층을 얻을 수 있었다. 본 결과는 CIGS 나노 입자의 입자 성장 반응에서 열에너지 단독에 의한 표면 에너지 감소 효과는 미미하며 셀레늄 증기의 역할이 더욱 크다는 것을 의미하는 것이다.

  • PDF

Characteristics of $Cu_2ZnSnSe_4$ Thin Film Solar Absorber Prepared by PLD using Solid Target (광흡수층 적용을 위한 PLD용 $Cu_2ZnSnSe_4$ 타겟 제조와 증착 박막의 특성)

  • Jung, Woon-hwa;Rachmat, Adhi Wibowo;Kim, Kyoo-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.130-133
    • /
    • 2009
  • $Cu_2ZnSnSe_4$(CZTSe) is one of the promising materials for the solar cell due to its abundant availability in the nature. In this study, we report the fabrication of CZTSe thin film by Pulsed Laser Deposition(PLD) method using quaternary compound target on sodalime glass substrate. The quaternary CZTSe compound target was synthesized by solid state reaction method using elemental powders of Cu, Zn, Sn and Se. Powders were milled in high purity ethanol using zirconia ball with mixed size of 1 and 3 mm at the same proportions for 72 hours milling time. The structural, chemical and mechanical properties of the synthesized CZTSe powders were investigated prior to the deposition process. The CZTSe compound powder, and $500^{\circ}C$ of sintering temperature shows the best properties for PLD target. Results show that the as-deposited CZTSe thin films with the precursors by PLD have a composition near-stoichiometric.

  • PDF

Effects of substrate temperature on the performance of $Cu_2ZnSnSe_4$ thin film solar cells fabricated by co-evaporation technique (동시진공 증발법을 이용한 $Cu_2ZnSnSe_4$ 박막 태양전지의 제조와 기판온도가 광전압 특성에 미치는 영향)

  • Jung, Sung-Hun;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.85-87
    • /
    • 2009
  • Despite the success of $Cu(In,Ga)Se_2$ (CIGS) based PV technology now emerging in several industrial initiatives, concerns about the cost of In and Ga are often expressed. It is believed that the cost of those elements will eventually limit the cost reduction of this technology. one candidate to replace CIGS is $Cu_2ZnSnSe_4$ (CZTSe), fabricated by co-evaporation technique. Effects of substrate temperature of $Cu_2ZnSnSe_4$ absorber layer on the performance of thin films solar cells were investigated. As substrate temperature increased, the grain size of $Cu_2ZnSnSe_4$ films increased presumably. At a optimal condition of substrate temperature is $320^{\circ}C$, the solar cell shows a conversion efficiency of 1.79% with $V_{OC}$ of 0.213V, JSC of $16.91mA/cm^2$ and FF of 49.7%.

  • PDF

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Window Integrated Solar Collectors (창호일체형 태양열 집열기)

  • Park, Seong-Bae;Lim, Seong-Whan;Park, Mann-Kwi
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.61-65
    • /
    • 2009
  • Window integrated solar collector is to simply install inside of the existing double glass window frame. Double glass window frame is consist of inner glass of Low-E coating and Silver coating, and outer glass of low iron reinforced glass. In order to secure natural lighting in a room, only 50% of window frame is covered with solar collectors. Solar absorption or transmission rate varies seasonally depending on sun angles. Part of inner glass where right behind of the solar plate is covered with silver coating to increase absorption rate of solar plate. The collector is made of a copper serpentine where aluminum fins are soldering. To improve the effect of insulation of inside of the window frame is recommend vacuum. As a result, we are making the 3th sample and will archieve below $F_RU_L=7.5W/m^2^{\circ}C$ that is the account of heat lossed, and above $F_R({\tau}{\alpha})=0.45$.

  • PDF

SEPARATION AND PURIFICATION PROCESS OF DEMO PLANT FOR 10TON PER DAY DME PRODUCTION (일일 10톤 DME 생산 Demo Plant에서의 분리정제 공정)

  • Ra Young Jin;Cho Wonihl;Shin Dong Geun;Lim Gye Gue
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-145
    • /
    • 2005
  • DME (Di-Methyl Ether) is a new clean fuel and an environmental-friendly energy resource, also is recently increasing with an alternative interest because of the industrial use. DME has been shown to have excellent properties as a diesel fuel giving emission level better than ULEV standard. So it has been attracting considerable as an alternative diesel fuel. In this study, we carried out simulation of separation and purification process of demo plant for 101on per day DME production, which cause the effect that is important in productivity, from operation results of pilot plant for 50kg per day DME production. The liquefied stream, which was separated by gas-liquid separator after DME reactor, includes $CO_2$, DME, Methanol and $H_2O$. We established three distillation columns for separation and purification of the stream. $CO_2$ was extracted from the stream by first distillation column, DME was extracted by second column and Methanol was extracted by third column. We investigated and analyzed the effect which the actual operation variables cause in efficiency of process and optimized process, finally we got the DME of purity $100\%$.

  • PDF