• Title/Summary/Keyword: endplate fracture

Search Result 13, Processing Time 0.022 seconds

The Proper Volume and Distribution of Cement Augmentation on Percutaneous Vertebroplasty

  • Kim, Dong-Joon;Kim, Tae-Wan;Park, Kwan-Ho;Chi, Moon-Pyo;Kim, Jae-O
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • Objective : The purpose of this study was to determine the optimal volume of injected cement and its distribution when used to treat vertebral compression fractures, and to identify factors related to subsequent vertebral fractures. Methods : A retrospective analysis of newly developing vertebral fractures after percutaneous vertebroplasty was done. The inclusion criteria were that the fracture was a single first onset fracture with exclusion of pathologic fractures. Forty-three patients were included in the study with a minimum follow up period of six months. Patients were dichotomized for the analysis by volume of cement, initial vertebral height loss, bone marrow density, and endplate-to-endplate cement augmentation. Results : None of the four study variables was found to be significantly associated with the occurrence of a subsequent vertebral compression fracture. In particular, and injected cement volume of more or less that 3.5 cc was not associated with occurrence (p = 0.2523). No relation was observed between initial vertebral height loss and bone marrow density (p = 0.1652, 0.2064). Furthermore, endplate-to-endplate cement augmentation was also not found to be significantly associated with a subsequent fracture (p = 0.2860) by Fisher's exact test. Conclusion : Neither volume of cement, initial vertebral height loss, bone marrow density, or endplate-to-endplate cement augmentation was found to be significantly related to the occurrence of a subsequent vertebral compression fracture. Our findings suggest that as much cement as possible without causing leakage should be used.

Bone Cement Dislodgement : One of Complications Following Bone Cement Augmentation Procedures for Osteoporotic Spinal Fracture

  • Ha, Kee-Yong;Kim, Young-Hoon;Yoo, Sung-Rim;Molon, Jan Noel
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.367-370
    • /
    • 2015
  • Bone cement augmentation procedures have been getting more position as a minimally invasive surgical option for osteoporotic spinal fractures. However, complications related to these procedures have been increasingly reported. We describe a case of bone cement dislodgement following cement augmentation procedure for osteoporotic spinal fracture by reviewing the patient's medical records, imaging results and related literatures. A 73-year-old woman suffering back and buttock pain following a fall from level ground was diagnosed as an osteoporotic fracture of the 11th thoracic spine. Percutaneous kyphoplasty was performed for this lesion. Six weeks later, the patient complained of a recurrence of back and buttock pain. Radiologic images revealed superior dislodgement of bone cement through the 11th thoracic superior endplate with destruction of the lower part of the 10th thoracic spine. Staged anterior and posterior fusion was performed. Two years postoperatively, the patient carries on with her daily living without any significant disability. Delayed bone cement dislodgement can occur as one of complications following bone cement augmentation procedure for osteoporotic spinal fracture. It might be related to the presence of intravertebral cleft, lack of interdigitation of bone cement with the surrounding trabeculae, and possible damage of endplate during ballooning procedure.

Clinical and Radiologic Analysis of Posterior Apophyseal Ring Separation Associated with Lumbar Disc Herniation

  • Bae, Jung-Sik;Rhee, Woo-Tack;Kim, Woo-Jae;Ha, Seong-Il;Lim, Jae-Hyeon;Jang, Il-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.145-149
    • /
    • 2013
  • Objective : We analyzed the clinical and radiologic features of posterior apophyseal ring separation (PARS) with lumbar disc herniation and suggest the proper management options according to the PARS characteristics. Methods : We reviewed case series of patients with PARS who underwent surgery of lumbar disc herniation. Preoperative symptoms, neurologic status, Body Mass Index, preoperative and postoperative Visual Analogue Scale (VAS) and Korean-Oswestry Disability Index (K-ODI) scores, operation types were obtained. PARS size, locations, the degree of resection were assessed. Results : PARS was diagnosed in 109 (7.5%) patients among 1448 patients given surgical treatment for single level lumbar disc herniation. There were 55 (50.5%) small PARS and 54 (49.5%) large PARS. Among the large PARS group, 15 (27.8%) had lower endplate PARS of upper vertebra at the level of disc herniation. Thirty-nine (72.2%) were upper endplate PARS of lower vertebra. Among the group with upper endplate PARS of lower vertebra, unresected PARS was diagnosed in 12 (30.8%) cases and resected PARS was diagnosed in 27 (69.2%) cases. VAS and K-ODI scores changes were $3.6{\pm}2.9$ and $5.4{\pm}6.4$ in the unresected PARS group, $5.8{\pm}2.1$ and $11.3{\pm}7.1$ in the resected PARS group. The group with upper endplate PARS of lower vertebra showed significant difference of VAS (p=0.01) and K-ODI (p=0.013) score changes between unresected and resected PARS groups. Conclusion : The large PARS of upper endplate in lower vertebra should be removed during the surgery of lumbar disc herniation. High level or bilateral side of PARS should be widely decompressed and arthrodesis procedures are necessary if there is a possibility of secondary instability.

Relationship between the Progression of Kyphosis in Thoracolumbar Osteoporotic Vertebral Compression Fractures and Magnetic Resonance Imaging Findings (흉요추 골다공증성 압박 골절에서의 후만 변형의 진행과 자기공명영상 소견 사이의 관계)

  • Jun, Deuk Soo;Baik, Jong-Min;Kwon, Hyuk Min
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • Purpose: To examine the relationship between the progression of a kyphotic deformity and the magnetic resonance imaging (MRI) findings in conservatively treated osteoporotic thoracolumbar compression fracture patients. Materials and Methods: This study categorized the patients who underwent conservative treatment among those patients who underwent treatment under the suspicion of a thoracolumbar compression fracture from January 2007 to March 2016. Among them, this retrospective study included eighty-nine patients with osteoporosis and osteopenia with a bone density of less than -2.0 and single vertebral body fracture. This study examined the MRI of anterior longitudinal ligament or posterior longitudinal ligament injury, superior or inferior endplate disruption, superior of inferior intravertebral disc injury, the presence of low signal intensity on T2-weighted images, and bone edema of intravertebral bodies in fractured intravertebral bodies. Results: In cases where the superior endplate was disrupted or the level of bone edema of the intravertebral bodies was high, the kyphotic angle, wedge angle, and anterior vertebral compression showed remarkably progression. In the case of damage to the anterior longitudinal ligament or the superior disc, only the kyphotic angle was markedly prominent. On the T2-weighted images, low signal intensity lesions showed a high wedge angle and high anterior vertebral compression. On the other hand, there were no significant correlations among the posterior longitudinal ligament injury, inferior endplate disruption, inferior disc injury, and the progression of kyphotic deformity and vertebral compression. The risk factors that increase the kyphotic angle by more than 5° include the presence of injuries to the anterior longitudinal ligament, superior endplate disruption, and superior disc injury, and the risk factors were 21.3, 5.1, and 8.5 times higher than those of the uninjured case, and the risk differed according to the level of bone edema. Conclusion: An osteoporotic thoracolumbar compression fracture in osteoporotic or osteopenic patients, anterior longitudinal ligament injury, superior endplate and intravertebral disc injury, and high level of edema in the MRI were critical factors that increases the risk of kyphotic deformity.

Cyclic behaviour of infilled steel frames with different beam-to-column connection types

  • Sakr, Mohammed A.;Eladly, Mohammed M.;Khalifa, Tarek;El-Khoriby, Saher
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.443-456
    • /
    • 2019
  • Although numerous researchers demonstrated the significant difference in performance between the various beam-to-column connection types, most of the previous studies in the area of infilled steel frames focused on the behaviour of frames with welded connections. Therefore, there is a need for conducting studies on infilled steel frames with other common connection types (extended endplate with and without rib stiffeners, flush endplate and shear connections). In this paper, firstly, a two-dimensional finite-element model simulating the cyclic response of infilled steel frames was presented. The infill-frame interaction, as well as the interactions between connections' components, were properly modelled. Using the previously-validated model, a parametric study on infilled steel frames with five different beam-to-column connection types, under cyclic loading, was carried out. Several parameters, including infill material, fracture energy of masonry and infill thickness, were investigated. The results showed that the infilled frames with welded connections had the highest initial stiffness and load-carrying capacity. However, the infilled frames with extended endplate connections (without rib stiffeners) showed the greatest energy dissipation capacity and about 96% of the load-carrying capacity of frames with welded connections which indicates that this type of connection could have the best performance among the studied connection types. Finally, a simplified analytical model for estimating the stiffness and strength of infilled steel frames (with different beam-to-column connection types) subjected to lateral cyclic loading, was suggested.

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

Complete Separation of the Vertebral Body Associated with a Schmorl's Node Accompanying Severe Osteoporosis

  • Park, Seon Joo;Kim, Hyeun Sung;Kim, Hyun Sook;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.147-149
    • /
    • 2015
  • A Schmorl's node is defined as a simple endplate intravertebral herniation resulting from trauma or idiopathic causes. Although Schmorl's nodes have been considered clinically insignificant, they might indicate an active symptomatic process or cause serious complications. In this study, we report an interesting case of complete separation of a vertebral body caused by an untreated Schmorl's node accompanying severe osteoporosis. To our knowledge, this is the first clinical report in the published literature to evaluate the complete separation of a vertebral body associated with a Schmorl's node.

Kyphotic Angle Measurement Accuracy for Vertebral Osteoporotic Compression Fracture; Reliable Method for Kyphotic Angle Measurement

  • Hong, Jae-Taek;Lee, Sang-Won;Son, Byung-Chul;Sung, Jae-Hoon;Park, Choon-Keun;Kim, Moon-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.4
    • /
    • pp.256-259
    • /
    • 2006
  • Objective : Having a reliable and reproducible measurement technique to measure the sagittal contour in vertebral fractures is paramount to clinical decision making. This study is designed to determine the most reliable measurement technique in osteoporotic vertebral compression fracture. Methods : Fifteen lateral radiographs of thoracic and lumbar fractures were selected and measured on two separate occasions by three spine surgeons using six different measurement techniques [Centroid, Harrison Posterior Tangent Methods and 4 different types of modified Cobb method]. The radiograph quality was assessed and the center beam location was determined. Statistical analysis including ANOVA for repeated measures was carried out using the SAS software [v 8.0]. Results : The inter and intraobserver variance of the Cobb method 4 and Harrison posterior tangent method were significantly lower than the other four methods. The intraobserver correlation coefficients were the most consistent using the Cobb method 4 [0.982]. which was followed by the Harrison posterior tangent [0.953] and Cobb methods 1 [0.874]. The intraobserver agreement [% of repeated measures within 5 degrees of the original measurement] ranged from 42% to 98% for each technique for all three observers, with the Cobb method 4 showing the best agreement [97.8%] followed by the Harrison posterior tangent method [937%]. Conclusion : The Cobb method-4 and Harrison posterior tangent methods, when applied to measuring the kyphosis, are reliable and have a similar small error range. The Cobb method 4 shows the best overall reliability. However, the centroid method and Cobb method using a fractured endplate do not produce an accurate result due to inter and intraobserver differences in determining the baseline.

The Value of Preoperative MRI and Bone Scan in Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fractures (골다공증성 척추체 압박골절에 대한 경피적 척추성형술시 자기공명영상과 골 주사 검사의 의의)

  • Kim, Se Hyuk;Lee, Wan Su;Seo, Eui Kyo;Shin, Yong Sam;Zhang, Ho Yeol;Jeon, Pyoung
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.907-915
    • /
    • 2001
  • Objective : Percutaneous vertebroplasty is often complicated by the presence of multiple fractures or non-localizing pain in the patients with osteoporotic vertebral fractures. The purpose of this study is to estimate the value of preoperative radiologic studies in the localization of symptomatic vertebrae and to determine the factors which can influence on the clinical results. Materials and Methods : We retrospectively reviewed the clinical and radiologic data of 57 vertebrae in 30 patients underwent percutaneous vertebroplasty for osteoporotic vertebral compression fractures. Inclusion criteria was severe pain(McGill-Melzack score 3, 4 or 5) associated with the acute vertebral fractures and absence of spinal nerve root or cord compression sign. Acute symptomatic vertebral fracture was determined by the presence of signal change on MR images or increased uptake on whole body bone scan. Results : Pain improvement was obtained immediately in all patients and favorable result was sustained in 26 patients(86.7%) during the mean follow-up duration of 4.7 months(5 complete pain relief, 21 marked pain relief). Those who underwent vertebroplasty for all acute symptomatic vertebrae had significantly better clinical result than those who did not. Further vertebral collapse and eventual bursting fracture occurred in 1 vertebra which showed intradiskal leakage of bone cement and disruption of cortical endplate on postoperative CT scan. Conclusion : Preoperative MR imaging and whole body bone scan are very useful in determining the symptomatic vertebrae, especially in the patients with multiple osteoporotic vertebral fractures. To obtain favorable clinical result, the careful radiologic evaluation as well as clinical assessment is required. Control of PMMA volume seems to be the most critical point for avoiding complications.

  • PDF