• Title/Summary/Keyword: endothelial nitric oxide synthase

Search Result 151, Processing Time 0.023 seconds

p66shc Adaptor Protein Suppresses the Activation of Endothelial Nitric Oxide Synthase in Mouse Embryonic Fibroblasts

  • Lee, Sang-Ki;Kim, Young-Shin;Kim, Cuk-Seong;Son, Sook-Jin;Yoo, Dae-Goon;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • Among the Shc proteins, p66shc is known to be related to oxidative stress responses and regulation of the production of reactive oxygen species (ROS). The present study was undertaken to investigate the role of p66shc on endothelial nitric oxide synthase (eNOS) activity in the mouse embryonic fibroblasts (MEFs). When wild type (WT) or p66shc (-/-) MEFs were transfected with full length of eNOS cDNA, the expression and activity of eNOS protein were higher in the p66shc (-/-) MEFs. These phenomena were reversed by reconstitution of p66shc cDNA transfection in the p66shc (-/-) MEFs. The basal superoxide production in the p66shc (-/-) MEFs was not significantly different from that of WT of MEFs. However, superoxide production induced by NADPH in the p66shc (-/-) MEF was lesser than that in WT MEFs. When compared with WT MEFs, cell lysate of p66shc (-/-) MEFs showed significantly increased H-ras activity without change of endogenous H-ras expression. Our findings suggest the pivotal role of p66shc adaptor protein played in inhibition of endothelial nitric oxide production via modulation of the expression and/or activity of eNOS protein.

The dependence of nitric oxide synthase inhibition caused by cigarette smoking extracton the cellular aging of bovine aortic endothelial cells

  • Le, VuQuynhAnh;Kim, Yang-Hoon;Min, Jiho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.10.1-10.6
    • /
    • 2014
  • Objectives Cigarette smoking had been recorded as the main cause of impaired endothelium-dependent vasodilation in smokers by reducing nitric oxide (NO), a production of endothelial nitric oxide synthase (eNOS). However, the mechanism of NO impairment via eNOS activity is unclear until now. In this study, cell passage is suggested to be a relevant factor to eNOS expression under cigarette smoking stress. Methods Bovine aortic endothelial cells (BAECs) were chosen as the research subject with passages ranking from 6 to 9 (6P to 9P). After exposure of cigarette smoking extract (CSE) solution, MTT assay and Western blot method were performed to check the cell viability as well as eNOS protein concentration. In these experiments, four concentrations of CSE at 0.5, 1, 2, and 4% were selected for treatment. Results Our results showed that cells almost died at 4% of CSE. Besides, eNOS protein mass had a linear decrease under the increase of CSE concentration. In addition, the effect of CSE on eNOS expression was dissimilar between different passages. Conclusions This study indicated that CSE had effect on both cell viability and eNOS expression. Besides, a reduction in protein mass was matched with the decrease of cell viability due to CSE tress. Last but not least, the response of eNOS protein to different concentration of CSE at different passages was disparate, making the hypothesis about cell passage related inhibition of eNOS caused by CSE solution.

Intravenous administration of piceatannol, an arginase inhibitor, improves endothelial dysfunction in aged mice

  • Nguyen, Minh Cong;Ryoo, Sungwoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • Advanced age is one of the risk factors for vascular diseases that are mainly caused by impaired nitric oxide (NO) production. It has been demonstrated that endothelial arginase constrains the activity of endothelial nitric oxide synthase (eNOS) and limits NO generation. Hence, arginase inhibition is suggested to be vasoprotective in aging. In this study, we examined the effects of intravenous injection of Piceatannol, an arginase inhibitor, on aged mice. Our results show that Piceatannol administration reduced the blood pressure in aged mice by inhibiting arginase activity, which was associated with NO production and reactive oxygen species generation. In addition, Piceatannol administration recovered $Ca^{2+}$/calmodulin-dependent protein kinase II phosphorylation, eNOS phosphorylation and eNOS dimer stability in the aged mice. The improved NO signaling was shown to be effective in attenuating the phenylephrine-dependent contractile response and in enhancing the acetylcholine-dependent vasorelaxation response in aortic rings from the aged mice. These data suggest Piceatannol as a potential treatment for vascular disease.

Anti-hypertensive Effects of DHP1501, Ethanolic Extracts from Eleutherococcus sessiliflorus Fruits, via Inhibition of Angiotensin Converting Enzyme and Activation of Endothelial Nitric Oxide Synthase (오가피열매 주정추출물, DHP1501의 ACE 억제 및 eNOS 활성화를 통한 항고혈압 효능)

  • Kim, Haneul;Kim, Hye Min;Jang, Jun Hee;Yoon, Koung Eun;Lee, Yeong-Geun;Back, Nam-In;Lee, Dae Young;Jung, In Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.240-245
    • /
    • 2018
  • The fruits of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu (Araliaceae), as edible fruits, were traditionally used for ingredients of wine or tea in Eastern Asia. In addition to, the fruits of E. sessiliflorus were known for having antioxidant and anti-inflammatory effects. Recently, we investigated that the ethanolic extracts of E. sessiliflorus fruits (DHP1501) have effects on hypertension via vasorelaxation and decrease of blood pressure. In the present study, we investigated that the gene and protein expression levels of endothelial nitric oxide synthase (eNOS) was increased by treatment of DHP1501 in HUVECs. Moreover, we confirmed the angiotensin converting enzyme inhibitory activity of DHP1501 through in vitro tasks. Therefore, DHP1501 could be a candidate of functional food for alleviating hypertension.

Rg3-enriched Korean Red Ginseng enhances blood pressure stability in spontaneously hypertensive rats

  • Nagar, Harsha;Choi, Sujeong;Jung, Saet-byel;Jeon, Byeong Hwa;Kim, Cuk-Seong
    • Integrative Medicine Research
    • /
    • v.5 no.3
    • /
    • pp.223-223
    • /
    • 2016
  • Background: Korean Red Ginseng (Panax ginseng) has been shown to exert antihypertensive effects. In particular, ginsenoside Rg3 is thought to be a potent modulator of vascular function. The present study was performed to examine the antihypertensive efficacy of Korean Red Ginseng (KRG) extract and Rg3-enriched KRG (REKRG) extract. Methods: Spontaneously hypertensive rats (SHRs) andWistar-Kyoto rats (WKYs) were divided into six groups (WKY control, WKY-KRG, WKY-REKRG, SHR control, SHR-KRG, and SHRREKRG), and systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured at the carotid artery, followed by injection of 3mg/kg KRG or 3mg/kg REKRG. Results: REKRG treatment significantly decreased SBP and DBP 3hours post-treatment in the SHR group compared with SHR control group. However, SBP and DBP were not significantly different in KRG-treated SHRs compared with control SHRs. REKRG treatment did not significantly alter SBP or DBP 3hours post-treatment in the WKY group compared with WKY control group. Similarly, there were no differences in SBP or DBP with KRG treatment in the WKY group and WKY control group. Both KRG and REKRG increased endothelial nitric oxide synthase phosphorylation levels in the aorta, and the increases in endothelial nitric oxide synthase phosphorylation levels by REKRG treatment were higher than those with KRG treatment. Similarly, nitric oxide production in plasma from WKYs and SHRs was also increased by both KRG and REKRG. Conclusion: These results suggest that REKRG has a more beneficial effect on blood pressure control than KRG in SHRs.

Prostaglandin $F_2{\alpha}$ Controls Reactive Oxygen Species in Bovine Corpus Luteum

  • Lee, Seunghyung;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Luteolysis is a cyclical regression of the corpus luteum in many non-primate mammalian species. Prostaglandin $F_2{\alpha}$($PGF_2{\alpha}$) from the uterus and ovary induces functional and structural luteolysis in bovine. The action of $PGF_2{\alpha}$ is mediated by $PGF_2{\alpha}$ receptor located on the luteal steroidogenic and endothelial cell membranes. $PGF_2{\alpha}$ plays an important role in regulating nitric oxide production in endothelial cells of the bovine corpus luteum. Nitric oxide production and nitric oxide synthase activity are stimulated and induced by $PGF_2{\alpha}$ in luteal endothelial cells. Moreover, the reactive oxygen species inhibits progesterone secretion in bovine luteal cells and induces apoptosis. Thus, the interaction between $PGF_2{\alpha}$ and reactive oxygen species provides important aspects in physiology of the corpus luteum forfunctional and structural luteolysis.

Korean Red Ginseng Water Extract Restores Impaired Endothelial Function by Inhibiting Arginase Activity in Aged Mice

  • Choi, Kwanhoon;Yoon, Jeongyeon;Lim, Hyun Kyo;Ryoo, Sungwoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young ($10{\pm}3$ weeks) and aged ($55{\pm}5$ weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.

The Role of Nitric Oxide in Menadione-Induced Cytotoxicity in Rat Platelets (Menadione에 의한 흰쥐 혈소판 세포독성에서 nitric oxide의 역할)

  • 승상애;김대병;윤여표;정진호
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.303-308
    • /
    • 1995
  • Nitric oxide, a physiological transmitter, is reported to mediate cellular injury in various tissues. Its reactivity to free radical is believed to be one of the reasons for its involvement in cytotoxicity. Menadione, a representative quinone, is cytotoxic to several cell systems including isolated hepatocyte, endothelial cell and red blood cells. Its toxic mechanism is related to oxidative stress, mediated by toxic free radicals. Our previous studies demonstrated that menadione induced cell lysis and increase of oxygen consumption in platelets. It has been reported that platelets have nitric oxide producing enzyme, nitric oxide synthase. Thus, we have investigated to manifest the role of nitric oxide.in menadione-induced cytotoxicity in rat platelets. Menadione induced cytotoxicity in platelets was unaffected by $N^G$-nitro-arginine methyl ester (L-NAME), selective and competitive inhibitor of nitric oxide synthase. We also invesitgated the role of extracellular nitric oxide in menadione-induced cytotoxicity of platelets by addition with sodium nitroprusside (SNP). SNP did not affect platelet cytotoxicity by menadione. These results suggested that nitric oxide which was generated endogeneously or exogeneously might have a negligible role in menadione-induced cytotoxicity in rat platelets.

  • PDF

Effect of the KH-304 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-304 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Lee, Hyun-Ji;Kim, Hee-Seok;Hwang, Sung-Yeoun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.680-684
    • /
    • 2006
  • This study was designed to investigate effects of KH-304 in improving erectile dysfunction (ED), particularly in terms of nitric oxide (NO)-cGMP pathways. After oral administration of the KH-304 water extract, 1OOmg, 300mg, 500mg or 700mg per 1 kg of Dody weigh for 10days, We examined the expression and activity of two enzyme: neuronal NO synthase (nNOS), endothelial NO synthase (eNOS) and that act upon the major NO-cGMP signaling pathway in penile tissue. Effect of KH-304 on COMP degradation was also examined using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP), Also, it examined the endothelial NO synthase (eNOS) for seaching effecting period (100mg, 300mg/kg for 10 and 30days) and peak intracavernous pressures (ICPS) in penile tissues rabbit copus cavernosum contracted by 10-6 M phenylephrine. The severely reduced peak intracavernous pressures (ICPS) in penile tissues were restored completely after KH-304 treatment, and KH-304 treatment significantly made the latency period earlier. Furthermore, the penile expression levels of nNOS, eNOS dependent NOS activities and COMP concentrations were increased significantly in the KH-304 100, 300mg treated rats. These results suggest that KH-304 with high expression of NOS may be useful in erectile dysfunction.

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.