• Title/Summary/Keyword: endothelial growth factor

Search Result 599, Processing Time 0.032 seconds

Retinopathy of prematurity: a review of epidemiology and current treatment strategies

  • Hong, Eun Hee;Shin, Yong Un;Cho, Heeyoon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.3
    • /
    • pp.115-126
    • /
    • 2022
  • Retinopathy of prematurity (ROP) is among the most common causes of childhood blindness. Three phases of ROP epidemics have been observed worldwide since ROP was first described in the 1940s. Despite advances in neonatal care, the occurrence of ROP and associated visual impairment has been increasing somewhere on Earth and remains difficult to control. Conventional treatment options for preventing ROP progression include retinal ablation using cryotherapy or laser therapy. With the emergence of anti-vascular endothelial growth factor (anti-VEGF) treatment for ocular diseases, the efficacy and safety of anti-VEGF therapy for ROP have recently been actively discussed. In the advanced stage of ROP with retinal detachment, surgical treatment including scleral buckling or vitrectomy is needed to maintain or induce retinal attachment. At this stage, the visual outcome is usually poor despite successful anatomical retinal attachment. Therefore, preventing ROP progression by timely screening examinations and treatment remains the most important part of ROP management.

Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse

  • Bao, Wenlei;Yin, Jianxin;Liang, Yan;Guo, Zhixin;Wang, Yanfeng;Liu, Dongjun;Wang, Xiao;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1355-1359
    • /
    • 2014
  • To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant $6{\times}his-gVEGF164$ protein was induced by 0.5 mM isopropyl thio-${\beta}$-D-galactoside at $32^{\circ}C$. Recombinant goat VEGF164 (rgVEGF164) was purified and identified by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice.

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

Oleanolic Acids Inhibit Vascular Endothelial Growth Factor Receptor 2 Signaling in Endothelial Cells: Implication for Anti-Angiogenic Therapy

  • Lee, Da-Hye;Lee, Jungsul;Jeon, Jongwook;Kim, Kyung-Jin;Yun, Jang-Hyuk;Jeong, Han-Seok;Lee, Eun Hui;Koh, Young Jun;Cho, Chung-Hyun
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.771-780
    • /
    • 2018
  • Angiogenesis must be precisely controlled because uncontrolled angiogenesis is involved in aggravation of disease symptoms. Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR-2) signaling is a key pathway leading to angiogenic responses in vascular endothelial cells (ECs). Therefore, targeting VEGF/VEGFR-2 signaling may be effective at modulating angiogenesis to alleviate various disease symptoms. Oleanolic acid was verified as a VEGFR-2 binding chemical from anticancer herbs with similar binding affinity as a reference drug in the Protein Data Bank (PDB) entry 3CJG of model A coordination. Oleanolic acid effectively inhibited VEGF-induced VEGFR-2 activation and angiogenesis in HUVECs without cytotoxicity. We also verified that oleanolic acid inhibits in vivo angiogenesis during the development and the course of the retinopathy of prematurity (ROP) model in the mouse retina. Taken together, our results suggest a potential therapeutic benefit of oleanolic acid for inhibiting angiogenesis in proangiogenic diseases, including retinopathy.

Angiogenic Effect of Cardiac Ankyrin Repeat Protein Overexpression in Vascular Endo-thelial Cell (Cardiac Ankyrin Repeat Protein의 과량발현이 혈관내피세포에서 갖는 혈관신생 촉진 효과)

  • Kong, Hoon-Young;Byun, Jong-Hoe
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.282-288
    • /
    • 2008
  • Tissue ischemia resulting from the constriction or obstruction of blood vessels leads to an illness that may affect many organs including the heart, brain, and legs. In recent years, considerable progress has been made in the field of therapeutic angiogenesis and the new approaches are expected to cure those "no-option patients" who are unsuited to conventional therapies. Although single angiogenic growth factor may be successful in inducing angiogenesis, combination of multiple growth factors is increasingly sought these days to augment the therapeutic responses. This trend is proper in light of the fact that blood vessel formation is a complex and multi-step process that requires the actions of many different factors. To meet the growing need for functionally significant blood flow recovery in the ischemic tissues, a novel strategy that can provide concerted actions of multiple factors is required. One way to achieve such a goal is to use a transcription factor that can orchestrate the expression of multiple target genes in the ischemic region and thus induce significant level of angiogenesis. Here, a putative transcription factor, cardiac ankyrin repeat protein (CARP), was evaluated in adenoviral vector context for angiogenic activity in human umbilical vein endothelial cells. The results indicated significant increase in proliferation, capillary-like structure formation, and induction of vascular endothelial growth factor, a typical angiogenic gene. Taken together, these results suggest that CARP represents itself as a novel target for therapeutic angiogenesis and warrants further investigation.

Effect of Proteases on the Migration and Invasion of U-373-MG Cells Induced by Vascular Endothelial Growth Factor and Hepatocyte Growth Factor (VEGF와 HGF에 의해 유도된 U-373-MG 세포의 이동 및 침윤에 미치는 단백질분해효소의 효과)

  • Jeon, Hui Young;Kim, Hwan Gyu
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1189-1195
    • /
    • 2016
  • Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are potent angiogenic factors that have been used clinically to induce angiogenesis. To enable migration and invasion, cells must proliferate and secrete proteinases, which degrade the surrounding extracellular matrix. The goal of this study was to investigate the cell proliferation; matrix metalloproteinase-2 (MMP-2), MMP-9, and plasmin secretion; and migration and invasion of glioma-derived U-373-MG cells induced by VEGF and HGF treatment. An additional goal was to test the hypothesis that elevated secretion of MMP-2, MMP-9, and plasmin contributed directly or indirectly to the proliferation, migration, and invasion of U-373-MG cells. Cell proliferation, migration, and invasion and MMP-2, MMP-9, and plasmin secretion were significantly increased in the VEGF and HGF-treated U-373-MG cells. To elucidate the role of the increased secretion of MMP-2, MMP-9, and plasmin in cell proliferation, migration, and invasion of the U-373-MG cells, they were treated with MMPs inhibitor (BB-94) and plasmin inhibitor (α2AP) prior to VEGF or HGF stimulation. The BB-94 and α2AP treatment resulted in a significant reduction in the cell proliferation, migration, and invasion of the U-373-MG cells as compared with the VEGF- and HGF-treated groups. The results indicate that inhibition of MMPs and plasmin reduce the cell proliferation, migration, and invasion of U-373-MG cells.

Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4 (티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작)

  • Ock, Mee Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1177-1182
    • /
    • 2013
  • Trichinella spiralis (T. spiralis) has been reported to induce angiogenesis and a supply of nutrients and to act as a reliable waste disposal system by induction of the expression of the angiogenic molecule vascular endothelial cell growth factor (VEGF) during nurse cell formation. However, the mechanism underlying the induction of VEGF in nurse cells by T. spiralis has not yet been defined. Some research has pointed to the possibility of hypoxia in nurse cells, but whether hypoxia occurs in infected muscle or nurse cells has not been studied. It is also a matter of debate whether hypoxia induces the expression of VEGF and subsequent angiogenesis in infected muscle. Recent studies showed that thymosin ${\beta}4$, a potent VEGF-inducing protein, was expressed at a very early stage of muscle infection by T. spiralis, suggesting that VEGF is induced at an early stage in nurse cells. Furthermore, hypoxia was not detected in any nurse cell stage but was detected in inflammatory cells. The findings suggest that induction of angiogenesis by VEGF in T. spiralis-infected nurse cells is mediated by thymosin ${\beta}4$ and unrelated to hypoxia.

Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha (VEGFα) Gene in Horse (Equus caballus)

  • Song, Ki-Duk;Cho, Hyun-Woo;Lee, Hak-Kyo;Cho, Byung Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.743-748
    • /
    • 2014
  • The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene ($VEGF{\alpha}$) by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog), we constructed a phylogenetic tree which showed that equine $VEGF{\alpha}$ belonged to the same clade of the pig $VEGF{\alpha}$. Analysis for synonymous (Ks) and non-synonymous substitution ratios (Ka) revealed that the horse $VEGF{\alpha}$ underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR) and quantitative-polymerase chain reaction (qPCR) showed ubiquitous expression of $VEGF{\alpha}$ mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of $VEGF{\alpha}$ gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.