• Title/Summary/Keyword: endosperm cell wall

Search Result 18, Processing Time 0.022 seconds

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.

Effect of Red Light on Changes of Embryo Tissue of Barley during Germination (맥아제조시(麥芽製造時) 적색광(赤色光) 희사(熙射)에 의한 배유조직(胚乳組織)의 변화(變化))

  • Kim, Jin-Gu;Shin, Seung-Lyeul;Kim, Ju-Nam;Kim, Soon-Dong;Kim, Kwang-Soo
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.60-64
    • /
    • 1987
  • This study was carried out to investigate the effect of the red light on embryo tissue of barley during germination. The solubility of starch in endosperm of germinated barley was different between dark and red treatments at the 3rd day of germination, but was increased by the red light from the 4th day of germination. Blue value of the starch in the germinated barley decreased rapidly from 0.42 at the 1st day to 0.13 at the 6th day in the dark, and same tendency was found in the red light, but blue value was lower in the red light than in the dark. Aleurone cell wall was swollen much faster in the red light than in the dark during germination. The cell wall was broken down more greatly in the red light than in the dark at the 5th day of germination.

  • PDF

STUDIES ON THE TISSUE CULTURE OF PANAX GINSENG

  • Harn C
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.9-22
    • /
    • 1974
  • Unlike the tissue culture in animals and human being, in higher plants various parts of the plant are cultured for varied purposes, and they are named variously depending on which parts are used as explants or what purposes they are cultured for. Followings are some of the names of culture used frequently: organ culture, tissue culture, callus culture, single cell culture, meristem culture, mericlone culture, ovary culture, ovule culture, embryo culture, endosperm culture, anther culture, pollen culture, protoplast culture, etc.. As the names of the culture indicate, in some kinds of culture the explants used for culture are actually not tissues, but organs, single cells, or protoplasts. It seems, however, convenient to call all of the above-mentioned cultures grossly as tissue culture. Several kinds of tissue culture were attempted using Panax ginseng as material and some of the results were summarized below. 1. Callus culture After dormancy of the sed was broken, whole embryo or parts (hypocotyl, cotyledon and epicotyl) of partly grown embryo were cultured in the media supplemented with growth regulators. Rapid swelling occurred in a few weeks, but most of the swelling was observed only in the basal part of epicotyl, changes in the other parts of embryo appearing in much later stages. The swelling or increase in size, however, was resulted not from the divisions of cells, but from the mere expansion of cell. Real calli were formed about two months after inoculation of explants. Callus tissues developed from cortex, pith, and vascular bundle in the cases of hypo- and epicotyl, from mesophyl tissue in the case of cotyledon. Shoots developed more easily from cotyledons regardless of whether they are detached from or attached to the embryo proper. 2. Culture in the Knudson C medium When cotyledons, detached from or attached to the embryo proper, were cultured in the growth regulator-free Knudson C medium comprision only several kinds of mineral compounds and sucrose, shoot primordium or callus developed profusely and finally plantlets were produced directly from shoot primordium or indirectly through callus. In this medium epidermal cells as well as mesophyl cells of the cotyledon became meristematic and divided, changing into multinucleate cells or multicellular bodies, developing eventually into either shoot primordia or calli. 3. Anther culture Anthers were cultured in the media supplemented with various growth regulators applied singly or in combinations. Callus was formed mostly in the connective tissue of anther. Cells of anther wall layers changed in appearance, but no division occurred. Microspores of all stages in development were not changed, ruling out the possibility that microspore-originated callus might be formed. 4. Isolation of protoplast Protoplasts were isolated from young root, leaf, and epicotyl, using 0.7M D-mannitols as osmoticum and using macerozyme and cellulase respectively for maceration and digestion of the cell wall. Production in large number of naked intact protoplast was rather difficult as compared with other plant species. Fusion of protoplasts occurred infrequently mainly due to the fewer number of naked protoplasts in the solution.

  • PDF

Physicochemical and Gelatinization Properties of Glutinous Rice Flour and Starch Steeped at Different Conditions (수침한 찹쌀가루와 전분의 이화학적 및 호화 특성)

  • 최은정;김향숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The effects of steeping on the physicochemical and gelatinization characteristics of glutinous rice flour and its starch were studied. Steeping conditions were 1 day at 25"C,7 days at 2iC and 7 days at 35"C. Crude protein, lipid and ash content were decreased br steeping. It was observed with scanning electron microscopy that endosperm cell wall of glutinous rice flour was diminished by steeping. Although morphology of the glutinous rice starch granules was not affected, the size was decreased by steeping. Density and water binding capacity(WBC) of glutinous rice flour and its starch were changed by steeping. X-ray diffraction pattern of glutinous rice starch was A type and was not affected by steeping. Swelling power of glutinous rice flour and its starch was increased but solubility was decreased by steeping. In Brabender amylographic examination, peak viscosity of untreated glutinous rice flour was very low and increased enormously by steeping resulting in the similar Brabender viscosity pattern to its starch. The gelatinization temperature examined by X-ray diffractometry was lowered by steeping. And the degree of gelatinization under the conclusion temperature increased with increasing of steeping Period and temperature.mperature.

  • PDF

Genotypic Variations in ${\beta}-glucan$ Content of Barley Cultivated in Different Regions

  • Kim Hong-Sik;Park Kwang-Geun;Baek Seong-Bum;Nam Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.335-339
    • /
    • 2006
  • The level of ${\beta}-glucan$ which is a major soluble dietary fiber found in the grain endosperm cell wall was highly variable among 25 barley genotypes grown at four locations including Suwon, Naju, Jinju, and Jeju. Statistically significant genotypic effects were observed for ${\beta}-glucan$ content at each or across growing sites (P<0.001). On average, 'Chalssalbori' showed the lowest percentage ${\beta}-glucan$ (4.04%) among genotypes in the grain, whereas 'Yonezawa Mochi' was highest in percentage ${\beta}-glucan$ (6.46%) compared to other genotypes. The significant difference between genotypes was approximately 1-2% across environments. The effects of location or interaction between locations and genotypes were not significant on the variation of ${\beta}-glucan$ contents. High ${\beta}-glucan$ content seemed to be greatly associated with such grain traits as waxiness and presence of husk except for 'Chalssalbori'. The waxy genotypes had a mean of 5.37% and values ranging from 5.28 to 5.47%, but normal genotypes had a mean of 4.78% and values ranging from 4.69 to 4.88% over environments. Hulless barley genotypes were also higher than hulled barley genotypes for the average ${\beta}-glucan$ content in both individual and over all environments. The difference between the hulled and hulless gene pools was on average of 0.37% with ranges from 0.19% to 0.56% at four environments. ${\beta}-glucan$ content measured from a mapping population of $F_5$-derived 107 lines derived from the cross between 'Yonezawa Mochi' and 'Neulssalbori' was not significantly associated with other agronomic traits except for 1,000-kernel weight at the '01 Suwon environment. Not too much information on the relationship of ${\beta}-glucan$ content to agronomic traits was available.

A study on the deterioration phenomenon of stored rice during the decomposition process of polysaccharide carbohydrates (다당류 탄수화물의 분해과정을 통한 보관 벼의 감모현상에 관한 연구)

  • Yong-Sik Youn;Jae-Min An;Wang-Taek Hwang;Hyungmin Roh;Hae-Min Park;Kyeongseok Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.289-298
    • /
    • 2023
  • Stored rice grain undergoes physical and chemical deteriorations over time. As temperature and moisture content are important factors affecting to the denaturation of rice, it is important to store rice at a low temperature and hermetic condition. From a microscopic point of view, many studies have already reported how proteins and lipids were denatured within rice grain. Meanwhile, the weight loss of rice is currently observed at actual storage sites and can occur for diverse reasons. In this study, it was assumed that the decomposition process of polysaccharides, known as the main component of rice, plays an important role in its weight loss. In specific, the roles of enzymes were also evaluated. Our interest is in the major polysaccharides within a rice grain such as starch as well as within a rice endosperm cell wall. It is suspected that the weight loss of rice grains during storage seems to associate with the degradation of amylose and amylopectin. Nevertheless, it should be also speculated the correlating effect of other components such as proteins and lipids.

Embryology of Jeffersonia dubia Baker et S. Moore (Berberidaceae) and comparison with allied genera (깽깽이풀의 발생과 근연속간 비교)

  • Ghimire, Balkrishna;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.4
    • /
    • pp.260-266
    • /
    • 2012
  • Because the embryological features of Jeffersonia dubia are poorly understood, we conducted the first embryological study comparing it to other related genera of Berberidaceae. Important embryological features of J. dubia are as follows: the anther is tetrasporangiate, anther wall formation confirms basic type, glandular tapetum cells are two nucleate, the epidermis persistent, and the endothecium develops fibrous thickenings, anther dehiscence by two valves, meiosis in a microspore mother cell is accompanied by simultaneous cytokinesis, microspore tetrads are usually tetrahedral, pollen grains two cells at the time of anthesis. The ovule is bitegmic, anatropous and crassinucellate, archesporium single celled, development of the embryo sac Polygonum type, a mature embryo sac is ellipsoidal in shape. Endosperm formation is of Nuclear type and embryogeny Onagrad type. Seeds are arillate and seed coat exotestal type. Embryological comparisons showed that Jeffersonia resemble to Epimedium and Vancouveria rather than Berberis and Mahonia in some features, like as number of tapetal cells, cytokinesis in meiosis, and thickness of exotesta. It also resembles to Gymnospermium in mode of anther wall formation, number of tapetal cells, formation of nucellar cap, and nature of antipodal cells. Nevertheless, Jeffersonia and Gymnospermium differ from several other embryological features and molecular data too. Therefore, embryological evidences support that Jeffersonia is closely related with Epimedium and Vancouveria.

Embryology of Gymnospermium microrrhynchum (Berberidaceae) (한계령풀의 생식기관 발생형태)

  • Ghimire, Balkrishna;Shin, Dong-Yong;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.226-233
    • /
    • 2010
  • An intensive study of the embryology of Gymnospermium microrrhynchum was conducted to provide information regarding a discussion of the phylogenetic relationships of the genus, which is yet unstudied. Our results indicated that Gymnospermium is similar to other genera of Berberidaceae in terms of its embryological features. Nevertheless, newly reported and unique features are the well-developed endothelium and the undifferentiated seed coat type. Until the study of Gymnospermium, it may have been considered to be closer to Caulophyllum and Leontice in the tribe Leonticeae. These three genera share many morphological features as well as molecular similarities, by which they are kept in the same tribe, Leonticeae. However, very little detailed embryological data regarding these genera have been published thus far. Gymnospermium was characterized according to the basic type of anther wall formation as well as its glandular tapetum, successive cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules with a nucellar cap, well-developed endothelium, its Polygonum type of embryo sac formation, its nuclear type of endosperm formation, and its undifferentiated seed coat type. In comparison with Nandina, there are many differences, such as the dehiscence of the anther, the cytokinesis in the microspore mother cells, the shape of the megaspore dyad, and the seed characteristics. Although we had no available detailed embryological information regarding Caulophyllum and Leontice, which are genera that are more closely related to Gymnospermium, we could deduce from the phylogenetic relationship that Gymnospermium, Caulophyllum, and Leontice are more closely related to each other than other genera of Berberidaceae on the basis of the seed characteristics.