• Title/Summary/Keyword: endophytic

Search Result 324, Processing Time 0.024 seconds

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF

Isolation and Identification of Rice Root Endophytic Antagonistic Serratia marcescens (벼 뿌리 내생 항균성 Serratia marcescens의 분리 및 동정)

  • Lee, Sook-Kyung;Song, Wan-Yeob;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • Twenty-three strains of Serratia sp., isolated from surface-sterilized rice roots collected in Chonbuk and Chungnam province, were identified and characterized. They were Gram-negative, rod shaped and red pigmented typically and their endophytism was confirmed by inoculation and reisolation of the strains in planta. Their antifungal activity against 4 rice pathogenic fungi was compared and ranged from 62.4 to 85.2% against Rhizoctonia solani and 68.0 to 88.5% against Pyricularia grisea. Among the 23 strains tested, strain Rsm220 showed the strongest inhibition activity against 4 pathogenic fungi. The strain was, therefore, selected as a biocontrol candidate for both the pathogens and its bacteriological characteristics and 165 rDNA sequences were analyzed. Phenotypic and biochemical characteristics of the selected Rsm220 were highly related to the type strain of S. marcescens and 165 rDNA sequencing of Rsm220 showed a homology of 98.2% to the type strain of S. marcescens. The strain Rsm220 was identified as S. marcescens and the inhibition result of this endophytic strain indicates that it is a potential biocontrol agent for R. solani and R grisea.

Griseofulvin from Xylaria sp. Strain F0010, an Endophytic Fungus of Abies holophylla and its Antifungal Activity Against Plant Pathogenic Fungi

  • PARK, JOONG-HYEOP;CHOI, GYUNG-JA;LEE, SEON-WOO;LEE, HYANG-BURM;KIM, KYOUNG-MO;JUNG, HACK-SUNG;JANG, KYOUNG-SOO;CHO, KWANG-YUN;KIM, JIN-CHEOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Abstract Griseofulvin has been used as an antifungal antibiotic for the treatment of mycotic diseases of humans and veterinary animals. The purpose of this work was to identify a griseofulvin-producing endophytic fungus from Abies holophylla and evaluate its in vivo antifungal activity against plant pathogenic fungi. Based on nuclear ribosomal ITS1-5.8SITS2 sequence analysis, the fungus was identified and labeled as Xylaria sp. F0010. Two antifungal substances were purified from liquid cultures of Xylaria sp. F0010, and their chemical identities were determined to be griseofulvin and dechlorogriseofulvin through mass and NMR spectral analyses. Compared to dechlorogriseofulvin, griseofulvin showed high in vivo and in vitro antifungal activity, and effectively controlled the development of rice blast (Magnaporthe grisea), rice sheath blight (Corticium sasaki), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Blumeria graminis f. sp. hordei), at doses of 50 to 150 ${\mu}$g/ml, depending on the disease. This is the first report on the production of griseofulvin and dechlorogriseofulvin by Xylaria species.

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Identification of Unrecorded Endophytic Fungi Isolated from Leaves of Woody Plants in Jejudo, Korea (제주도에 서식하는 목본 식물의 잎에서 분리한 미기록 내생균)

  • Lee, Bong-Hyung;Kim, Dong-Yeo;Park, Hyeok;Eo, Ju-Kyeong;Lee, Hyang Burm;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.252-258
    • /
    • 2016
  • In this study, endophytic fungi were isolated from the leaves of five species of woody plants in Jeju, Korea, namely Chamaecyparis obtusa, Cryptomeria japonica, Torreya nucifera, Ilex crenata, and Camellia japonica. The isolated fungal endophytes were identified based on their morphological and molecular characteristics including a sequence analysis of the internal transcribed spacer and 26S regions of rDNA and ${\beta}$-tubulin genes. Ten species of fungal endophytes have not been previously reported in Korea, namely Mycosphaerella aleuritidis, Neofusicoccum eucalyptorum, Neofusicoccum parvum, Phyllosticta citrichinensis, Phyllosticta cryptomeriae, Phomopsis cotoneastri, Sphaerulina rhododendricola, Guignardia mangiferae, Lophodermium jiangnanense, and Lophodermium minus.

Butyrolactones Derivatives from the Fermentation Products of an Endophytic Fungus Aspergillus versicolor

  • Ye, Yan-Qing;Xia, Cong-Fang;Yang, Juan-Xia;Yang, Yu-Chun;Qin, Ying;Gao, Xue-Mei;Du, Gang;Li, Xue-Mei;Hu, Qiu-Fen
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3059-3062
    • /
    • 2014
  • Two new butyrolactones, asperphenol A (1) and B (2), together with four known butyrolactones (3-6) were isolated from the fermentation products of an endophytic fungus Aspergillus versicolor. Their structures were elucidated by spectroscopic methods including extensive 1D- and 2D-NMR techniques. Compounds 1-6 were also tested for their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compound 2 exhibited high anti-TMV activity with inhibition rate of 46.7%. The other compounds also exhibited potential anti-TMV activities with inhibition rates in the range of 21.8-28.4%.

Gibberellin Production and Plant Growth Enhancement by Newly Isolated Strain of Scolecobasidium tshawytschae

  • Hamayun, Muhammad;Khan, Sumera Afzal;Kim, Ho-Youn;Chaudhary, Muhammad Fayyaz;Hwang, Young-Hyun;Shin, Dong-Hyun;Kim, In-Kyeom;Lee, Byung-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.560-565
    • /
    • 2009
  • We isolated nine endophytic fungi from the roots of salt-stressed soybean cultivar Daewonkong and screened them for growth-promoting secondary metabolites. Of all fungal isolates, P-4-3 induced maximum growth promotion of waito-c rice and soybean. Analysis of the culture filtrate of P-4-3 showed the presence of physiologically active gibberellins $GA_1$, $GA_3$, $GA_4$, and $GA_7$, along with physiologically inactive $GA_{15}$ and $GA_{24}$. The plant growth promotion and gibberellin-producing capacity of P-4-3 was much higher than wild-type Gibberella fujikuroi, which was taken as the control during the present study. The fungal isolate P-4-3 was identified as a new strain of Scolecobasidium tshawytschae through the morphological characteristics and phylogenetic analysis of 18S rDNA sequence. Gibberellins production and plant growth promoting ability of genus Scolecobasidium was reported for the first time in the present study.

An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential

  • Syed, Riyaz-Ul-Hassan;Strobel, Gary;Geary, Brad;Sears, Joe
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2,4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1,8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.

Distribution of Rhizosphere and Endosphere Fungi on the First-Class Endangered Plant Cypripedium japonicum

  • Gang, Geun-Hye;Cho, Gyeongjun;Kwak, Youn-Sig;Park, Eun-Hee
    • Mycobiology
    • /
    • v.45 no.2
    • /
    • pp.97-100
    • /
    • 2017
  • Endangered native plant habitats and populations are rapidly disappearing because of climate and environmental changes. As a representative, the abundance of the first-class endangered wild plant, Cypripedium japonicum, has been rapidly decreasing in Korea. The purpose of this study was to evaluate the distribution of rhizosphere and endophytic fungi on C. japonicum in its native habitat. A total of 440 rhizosphere and 79 endosphere fungi isolates were isolated and identified on the basis of their molecular characteristics. Sixty-five genera and 119 fungi species were identified in this study. The genus Trichoderma showed the highest abundance among both rhizosphere and endosphere fungi. Mortierella, Hypocrea, and Penicillium spp. were also relatively dominant species on C. japonicum. The community structures of rhizosphere and endosphere fungi were similar, but endosphere fungi showed greater diversity.