• Title/Summary/Keyword: endophyte genotype

Search Result 3, Processing Time 0.019 seconds

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

Effect of Tall fescue (Schedonorus phoenix Scop.) Genotype on Endophyte (Neotyphodium coenophialum) Transmission under Water stress

  • Noh, Jaejong;Ju, Ho-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.325-334
    • /
    • 2012
  • It has been known that endophyte (Neotyphodium coenophialum) is beneficial to tall fescue (Schedonorus phoenix Scop.) because the mutualistic endophyte is able to confers tolerance against abiotic and biotic stresses to tall fescue. However, this fungal endophyte produces toxic alkaloid resulting in negative effects on animal performance. Recently, Non-toxic endophyte have been developed and inserted into tall fescue to avoid detrimental effect on animal but remaining positive influence on tall fescue. In order to keep this beneficial impact, it is essential to have endophyte infected tall fescue through vertical transmission from maternal plants to seeds. Little research has been carried out on endophyte transmission. To get basic information related to endophyte transmission, experiment was conducted to examine the effect of plant genotype on endophyte transmission under water stresses. Overall endophyte concentration in seeds was higher than that in panicles and endophyte concentration in seeds and panicles relied on plant. This study revealed that drought is not a critical component to control the endophyte transmission from maternal plants to seeds. Plant genotype is an important factor controlling the endophyte transmission from plant to seed.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF