• Title/Summary/Keyword: endocrine disrupting compounds (EDCs)

Search Result 20, Processing Time 0.029 seconds

Removal Characteristics of Endocrine Disrupting Compounds (EDCs), Pharmaceutically Active Compounds (PhACs) and Personal Care Products (PCPs) by NF Membrane (NF막을 이용한 EDCs, PhACs, PCPs 물질의 제거 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • Reports of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs), and personal care products (PCPs) have raised substantial concern in important potable drinking water quality issues. Our study investigates the removal of EDCs, PhACs, and PCPs of 10 compounds having different physico-chemical properties (e.g., molecular weight, and octanol-water partition coefficient ($K_{OW}$)) by nanofiltration (NF) membranes. The rejection of micropollutants by NF membranes ranged from 93.9% to 99.9% depending on solute characteristics. A batch adsorption experiments indicated that adsorption is an important mechanism for transport/removal of relatively hydrophobic compounds, and is related to the octanol-water partition coefficient values. The transport phenomenon associated with adsorption may also depend on solution water chemistry such as pH and ionic strength influencing the pKa value of compounds. In addition, it was visually seen that the retention was somewhat higher for the larger compounds based on their molecular weight. These results suggest that the NF membrane retains many organic compounds due to both hydrophobic adsorption and size exclusion mechanisms.

Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes (EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구)

  • Jung, Chanil;Son, Jooyoung;Yoon, Yeomin;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

Degradation of Endocrine Disrupting Chemicals by Laccase Transformant of Phlebia tremellosa (아교버섯 형질전환체를 이용한 내분비장애 물질의 분해)

  • Yeo, Su-Min;Kim, Myung-Kil;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.10-13
    • /
    • 2008
  • Endocrine disrupting chemicals (EDCs) are hard to be degraded in nature, and are also accumulated in diverse organisms. They finally give negative effects to human through the food web. White rot fungi which have lignin-degrading enzymes have high potentials for degradation of recalcitrant compounds, and a white rot fungus, Phlebia tremellosa, isolated in Korea show good degrading activity against the endocrine disrupting phthalates. We have isolated a laccase cDNA which was involved in the degradation of EDCs, and constructed a laccase expression vector to use in the genetic transformation of P. tremellosa. The expression vector was stably integrated into the chromosomal DNAs and showed increased laccase activity in transformants. One of transformants showed not only increased degradation of several EDCs but also faster estrogenic decreasing activities generated by the EDCs.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF

Monitoring of Endocrine Disruptors (Bisphenol A and Styrene Oligomers) in the Streams of Cholla-namdo Province in South Korea (전라남도 지역의 하천수에 존재하는 내분비 장애물질(Bisphenol A와 Styrene oligomer)의 실태조사)

  • Park, Song-In;Chung, Seon-Yong;Kstsuhiko, Saido;Hideto, Sato;Na, Suk-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, there have been active researches regarding endocrine-disrupting chemicals (EDCs). In this study, fifteen small freshwater streams in Cholla-namdo province, South Korea were investigated with respect to the concentration of the endocrine disruptors - Bisphenol A (BPA), styrene monomer (SM), styrene dimer (SD), and styrene trimer (ST) by gas chromatography-mass spectrometry (GC-MS). Measured concentration of the target compounds in the sampled water ranged from

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

Quantitative Assessment of Xenoestrogenic Environmental Pollutants using E-SCREEN Assay (E-SCREEN Assay를 이용한 내분비계 장애물질의 정량적 평가)

  • 오승민;이상기;정규혁
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.416-423
    • /
    • 2000
  • There is a growing concern that a wide variety of chemicals released into the environment can disrupt the endocrine system of fish, wildlife and humans. Endocrine disrupting chemicals (EDCs) include pesticides such as DDT lindane and atrazine, the food packaging chemicals, phthalates and bisphenol A, alkylphenol ethoxylate detergents and the chemical industry by-products, dioxins. Xenoestrogens in the environment have been argued about health risk, because of estrogen mimetic chemicals are exposed only small amounts to human. A number of in vivo and in vitro assays are now in use to assess the activity of xenoestrogens in the environment. A human breast cancer cell line (MCF-7) was used to develop in vitro screening assay for the detection of xenoestrogenic environmental pollutants. The E-SCREEN (MCF7-BUS) assay is proposed as a reliable, easy and rapid-to-perform method. To optimize and validate this method before it can be used routinely, several phenol compounds and pesticides suspected to be estrogenic were tested using I-SCREEN assay. The results showed that this method is a valuable tool for screening potential estrogen-mimicking environmental pollutants and quantitative determination of estrogeniciy.

  • PDF

Effect of Nonylphenol on Plasma Glutamate Oxaloacetate Transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) in the Juvenile Rockfish, Sebastes schlegeli

  • Hwang Un-Gi;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.308-310
    • /
    • 2002
  • Effect of 4-nonylphenol (4-NP), endocrine disrupting compounds (EDCs), on glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were investigated in the plasma of juvenile rockfish, Sebastes schlegeli. Fish were injected with 4­NP (10, 50, 100 and 200 mg/kg body weight) in $70\%$ ethanol twice at 3-day intervals and plasma sampling were extracted at 7 days after the last injection. Controls received solvent only. 4-NP significant increased GOT in a dose-dependent manner. GPT was markedly elevated to $61\%$ (P<0.05) and $82\%$ (P<0.01) than that of the control at the 4-NP doses of 100 and 200mg, respectively. These results suggest that the estrogenic activity of 4-NP increase plasma GOT and GPT by toxic effect on hepatocyte.