• Title/Summary/Keyword: endocrine disrupting chemicals(EDCs)

Search Result 81, Processing Time 0.026 seconds

Monitoring of Endocrine Disruptors (Bisphenol A and Styrene Oligomers) in the Streams of Cholla-namdo Province in South Korea (전라남도 지역의 하천수에 존재하는 내분비 장애물질(Bisphenol A와 Styrene oligomer)의 실태조사)

  • Park, Song-In;Chung, Seon-Yong;Kstsuhiko, Saido;Hideto, Sato;Na, Suk-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, there have been active researches regarding endocrine-disrupting chemicals (EDCs). In this study, fifteen small freshwater streams in Cholla-namdo province, South Korea were investigated with respect to the concentration of the endocrine disruptors - Bisphenol A (BPA), styrene monomer (SM), styrene dimer (SD), and styrene trimer (ST) by gas chromatography-mass spectrometry (GC-MS). Measured concentration of the target compounds in the sampled water ranged from

Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes (EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구)

  • Jung, Chanil;Son, Jooyoung;Yoon, Yeomin;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

Mining of Biomarker Genes from Expressed Sequence Tags and Differential Display Reverse Transcriptase-Polymerase Chain Reaction in the Self-fertilizing Fish, Kryptolebias marmoratus and Their Expression Patterns in Response to Exposure to an Endocrine-disrupting Alkylphenol, Bisphenol A

  • Lee, Young-Mi;Rhee, Jae-Sung;Hwang, Dae-Sik;Kim, Il-Chan;Raisuddin, Sheikh;Lee, Jae-Seong
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.287-303
    • /
    • 2007
  • Expressed sequence tags (ESTs) and differentially expressed cDNAs from the self-fertilizing fish, Kryptolebias marmoratus were mined to develop alternative biomarkers for endocrine-disrupting chemicals (EDCs). 1,577 K. marmoratus cDNA clones were randomly sequenced from the 5'-end. These clones corresponded to 1,518 and 1,519 genes in medaka dbEST and zebrafish dbEST, respectively. Of the matched genes, 197 and 115 genes obtained Unigene IDs in medaka dbEST and zebrafish dbEST, respectively. Many of the annotated genes are potential biomarkers for environmental stresses. In a differential display reverse transcriptase-polymerase chain reaction (DD RT-PCR) study, 56 differential expressed genes were obtained from fish liver exposed to bisphenol A. Of these, 16 genes were identified after BLAST search to GenBank, and the annotated genes were mainly involved in catalytic activity and binding. The expression patterns of these 16 genes were validated by real-time RT-PCR of liver tissue from fish exposed to bisphenol A. Our findings suggest that expression of these 16 genes is modulated by endocrine disrupting chemicals, and therefore that they are potential biomarkers for environmental stress including EDCs exposure.

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.180-180
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EBCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. Here we developed an in-house cDNA microarray, named KISTCHIP-400, with 401 clones, hormone related genes, factors, and ESTs, based on public database and research papers. Theses clones contained estrogen, androgen, thyroid hormone St receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. And to validate the KISTCHIP-400, we investigated gene expression profiles with reference hormones, 10$\^$-8/ M 17be1a-estradiol, 10$\^$-7/ M testosterone, 10$\^$-7/ M progesterone, and thyroxin in MCF-7 cell line. Although it is in first step of validation, low doses and combinations of EDCs need to be tested. Our preliminary results that indicate the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

  • PDF

Development of an Enzyme-linked Immunosorbent Assay Using Vitellin for Vitellogenin Measurement in the Pale Chub, Zacco platypus

  • Lim, Eun-Suk;Lee, Eun Hee;Kim, Myung Hee;Han, Chang-Hee;Lee, Sung-Kyu;Kim, Jiwon
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.16.1-16.8
    • /
    • 2013
  • Objectives Fish vitellogenin (VTG) is produced in the female liver during oogenesis through the estradiol cycle and produced in the male liver by endocrine disrupting chemicals (EDCs) such as alkylphenols. In this study, we propose that the VTG concentration in the pale chub could be detected using monoclonal antibodies and polyclonal antibodies against vitellin (Vn) in a VTG enzyme-linked immunosorbent assay (ELISA) system. Methods Monoclonal antibodies and polyclonal antibodies were produced using the Vn extracted from the matured ovum of the ovary. The VTG was extracted from the plasma of the male pale chub. The Vn and VTG were confirmed by measuring the molecular weight of their proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the specificity of the antibodies was checked through western blotting methods. The assay system was validated with respect to optimal assay concentrations, specificity, recovery, and intra- and inter-assay variations. Results The Vn consisted of two protein bands with apparent molecular weights of 64 and 37 kDa. The SDS-PAGE indicated protein weights of 146 and 77 kDa in the VTG. The assay range was 15.6 ng/mL to 2,000 ng/mL, and the value of the intra- and inter-assay variations were within 10.0% and 14.7%, respectively. The recovery rate was $99.5{\pm}5.5%$. Conclusions A sandwich ELISA was developed that could be used to qualify the VTG of pale chub in screening for EDCs. Pale chub is an ideal species for observing estrogen activity in the environment because of its extensive habitat and extensive food chain. The ELISA developed here would be more favorable than those for other species for determining the effect of long-term food chain accumulation of EDCs in aquatic environments.

Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review

  • Lee, Do Gyun
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.111-120
    • /
    • 2015
  • Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan. Overall, this review aims to provide better understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.

Developing a Multi-purpose Ecotoxicity Database Model and Web-based Searching System for Ecological Risk Assessment of EDCs in Korea (웹 기반 EDCs 생태 독성 자료베이스 모델 및 시스템 개발)

  • Kwon, Bareum;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.412-421
    • /
    • 2017
  • Objectives: To establish a system for integrated risk assessment of EDCs in Korea, infrastructure for providing toxicity data of ecological media should be established. Some systems provide soil ecotoxicity databases along with aquatic ecotoxicity information, but a well-structured ecotoxicity database system is still lacking. Methods: Aquatic and soil ecotoxicological information were collected by a toxicologist based on a human readable data (HRD) format for collecting ecotoxicity data that we provided. Among these data, anomalies were removed according to database normalization theory. Also, the data were cleaned and encoded to establish a machine-readable data (MRD) ecotoxicity database system. Results: We have developed a multi-purpose ecotoxicity database model focusing on EDCs, ecological species, and toxic effects. Also, we have constructed a web-based data searching system to retrieve, extract, and download data with greater availability. Conclusions: The results of our study will contribute to decision-making as a tool for efficient ecological risk assessment of EDCs in Korea.

Effects of Bisphenol A and BPA Alternatives on the Nervous System (Bisphenol A와 대체물질들이 신경계에 미치는 영향)

  • Ha Jung Moon;Seung Hyun Lee;Hyun Seung Shin;Eui-Man Jung
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.371-381
    • /
    • 2023
  • Endocrine disrupting chemicals (EDCs), used in a variety of products in modern society, are hormone-like substances that cause various diseases. Humans are exposed to EDCs through their inclusion in pesticides, plastics, cosmetics, detergents, and drugs. Bisphenol A (BPA), one of the representative endocrine disruptors, is an estrogen-like substance that has been widely used commercially in plastic and epoxy resins. BPA is a chemical that can disrupt the endocrine system, leading to reduced reproductive function, obesity, cancer, and neurodevelopmental disorders. Since the adverse health effects of BPA began to be reported the use of BPA has been regulated worldwide. Various alternatives to BPA have been widely used worldwide; representatively, bisphenol S (BPS) and bisphenol F (BPF) are the most commonly used in commercial contexts. BPS and BPF may cause endocrine-disrupting effects like those of BPA due to their similar chemical structures. Recent studies have reported that BPS and BPF disrupt the neurodevelopmental process and cause neurodevelopmental disorders. Therefore, future studies will be required for safety verification of BPA alternatives and the development of new alternatives to BPA for brain health. In this review, we reviewed the effects of BPA and the alternatives, BPS and BPF, on the nervous system.

The Endocrine Disruption Induced by Ampicillin and Amoxicillin in Japanese Medaka (Oryzias latipes)

  • Kim, Kyung-Tae;Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.207-210
    • /
    • 2007
  • The study was designed to determine the estrogenic effect of some penicillins on endocrine function in adult Japanese medaka (Oryzias latipes). Vitellogenin (Vtg) produced in male fish has been used for a biomarker to study endocrine disrupters. $17\beta-estradiol\;(E_2)$ was used a positive control that was induced Vtg in male fish. Result of total protein qantification and ELISA for female and male fish were exposed to $17\beta-estradiol$ 10ng/ml for $3\sim5$ days. As a result, male fish exposed to amoxicillin respectively appeared 0.75, 0.23, 8.21 and $9.36\%_{\circ}$ of 1, 10, 100 and 1000 ppm respectively, that value was elevated compared with control male fish. Male fish exposed to ampicillin respectively appeared 1.85, 4.68, 0.85 and $39.59\%_{\circ}$ of 1, 10, 100 and 1000 ppm respectively, that value was elevated compared with control male fish. This study is one of the first reports suggesting potential endocrine disruption of some penicillins in aquatic ecosystem. These results suggest that vitellogenin and estrogen receptor induction patterns alter in male medaka treated with selected estrogenic compounds, and that these results may be useful molecular biomarkers for screening estrogenic EDCs (endocrine-disrupting chemicals) in the shortest possible time.

Occurrence and removals of micropollutants in water environment

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • Micropollutants are often discharged to surface waters through untreated wastewater from sewage treatment plants and wastewater treatment plants. The presence of micropollutants in surface waters is a serious concern because surface water is usually provided to water treatment plants (WTP) to produce drinking water. Many micropollutants can withstand conventional WTP systems and stay in tap water. In particular, pharmaceuticals and endocrine disruptors are examples of micropollutants that are detected at the drinking water, ppb, or even ppb level. A variety of techniques and processes, especially advanced oxidation processes, have been applied to remove micropollutants from water to control drinking water contamination. This paper reviews recent researches on the occurrence and removal of micropollutants in the aquatic environments and during water treatment processes.