• 제목/요약/키워드: endocrine disrupting chemicals

검색결과 202건 처리시간 0.022초

Toxicity Monitoring of Endocrine Disrupting Chemicals (EDCs) Using Freeze-dried Recombinant Bioluminescent Bacteria

  • Kim, Sung-Woo;Park, Sue-Hyung;Jiho Min;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.395-399
    • /
    • 2000
  • Five different freeze-dried recombinant bioluminescent bacteria were used for the detection of cellular stresses caused by endocrine disrupting chemicals. These strains were DPD2794 (recA::luxCDABE), which is sensitive to DNA damage, DPD2540 (fabA::luxCDABE), sensitive to cellular membrane damage, DPD2511 (katG::luxCDABE), sensitive to oxidative damage, and TV1061 (grpE::luxCDABE), sensitive to protein damage. GC2, which emits bioluminescence constitutively, was also used in this study. The toxicity of several chemicals was measured using GC2. Damage caused by known endocrine disrupting chemicals, such as nonyl phenol, bisphenol A, and styrene, was detected and classified according to toxicity mode, while others, such as phathalate and DDT, were not detected with the bacteria. These results suggest that endocrine disrupting chemicals are toxic in bacteria, and do not act via an estrogenic effect, and that toxicity monitoring and classification of some endocrine disrupting chemicals may be possible in the field using these freeze-dried recombinant bioluminescent bacteria.

  • PDF

Toxicological Mechanism of Endocrine Disrupting Chemicals: Is Estrogen Receptor Involved?

  • Jeung, Eui-Bae;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.237-243
    • /
    • 2010
  • Endocrine disrupting chemicals (EDCs) have been shown to interfere with physiological systems, i.e., adversely affecting hormone balance (endocrine system), or disrupting normal function, in the female and male reproductive organs. Although endocrine disruption is a global concern for human health, its impact and significance and the screening strategy for detecting these synthetic or man-made chemicals are not clearly understood in female and male reproductive functions. Thus, in this review, we summarize the interference of environmental EDCs on reproductive development and function, and toxicological mechanism(s) of EDCs in in vitro and in vivo models of male and female reproductive system. In addition, this review highlights the effect of exposure to multiple EDCs on reproductive functions, and brings attention to their toxicological mechanism(s) through estrogen receptors.

Environmental Biosensors for Organochlorines, Cyanobacterial Toxins and Endocrine Disrupting Chemicals

  • Sadik, Omowunmi A.;Ngundi, Miriam M.;Yan, Fei
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.407-412
    • /
    • 2000
  • Environmental biosensors and related techniques for monitoring organochlorines, endocrine disrupting chemicals and cyanobacterial toxins are described. The practical requirements for an ideal environmental biosensor are analyzed. Specific case studies for environmental applications are reported for triazines, chlorinated phenols, PCBs, microcystins, and endocrine disrupting chemicals. A new promising approach is reported for microcystins and alkylphenols that utilize electrooptical detection.

  • PDF

Biodegradation of Endocrine-disrupting Phenolic Compounds Using Laccase Followed by Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권5호
    • /
    • pp.294-298
    • /
    • 2003
  • Endocrine-disrupting phenolic compounds in the water were degraded by laccase from Trametes sp. followed by activated sludge treatment. The effect of temperature on the degradation of phenolic compounds and the production of organic compounds were investigated using endocrine-disrupting chemicals such as bisphenol A, 2.4-dichlorophenol, and diethyl phthalate. Bisphenol A and 2.4-dichlorophenol disappeared completely after the laccase treatment, but no disappearance of diethyl phthalate was observed. The Michaelis-Menten type equation was proposed to represent the degradation rate of bisphenol A by the lacasse under various temperatures. After the laccase treatment of endocrine-disrupting chemicals, the activated sludge treatment was attempted and it could convert about 85 and 75% of organic compounds produced from bisphenol A and 2.4-dichlorophenol into H$_2$O and CO$_2$, respectively.

Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals

  • Eui-Man Jung;Seung Hyun Lee;Geun-Shik Lee
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.193-198
    • /
    • 2023
  • Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

내분비교란물질이 야생동물 및 인간의 내분비기능과 생식기능에 미치는 영향 (Effects of Endocrine Disruptors on Endocrine Function and Reproductive Function in Wildlife and Humans)

  • 류병호
    • 한국식품영양과학회지
    • /
    • 제28권5호
    • /
    • pp.1180-1186
    • /
    • 1999
  • A wide ranges of chemicals released into the environment have potential to interfere with physiological and development process by disrupting endocrine pathways. Endocrine system embraces a multitude of mechanisms of action, including effect on growth, behavior, reproduction and immune function. These environmental endocrine disruptors are present in environment and pose potential health consequences to human and wildlife. The best known form in endocrine distruptors involves substances which mimic or block the action of natural hormone in the body. Endocrine disruptor have been variously defined as exogenous agents that interfere with the synthesis, secretion, transport, metabolism, binding action or elimination of the natural hormones in the body which are responsible for the maintenance of homeostasis, reproduction developmental and/or behavior. Many compounds polluted into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Among these chemicals are pesticides, industrial chemicals, and other anthropogenic products. It has been alleged that several adverse effects on human health are linked with exposure to chemicals which are claimed to be endocrine disrupters, that is, increased incidence of testicular, prostate and female breast cancer, time dependent reductions in sperm quality and quantity, increased incidence of cryptorchidism (undescended testicles) and hypospadias(malformation of the penis), altered physical and mental de velopment in children. This observation is currently the only example of chemically mediated endocrine disruption which has resulted in a clear effect at the population level.

  • PDF

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

Dertermination of Alkylphenols, Chlorophenols and Bisphenol A in Various Samples by Freezing Filtration and GC/MS-SIM

  • Kim, Hyub
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.68.1-68.1
    • /
    • 2003
  • A method for determination 11 endocrine disrupting chemicals of phenols in various samples was deloped. The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) followed by two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization method and tert-butyldimethylsilyl (TBDMS) derivatization method. Eleven endocrine disrupting chemicals (EDCs) of phenols in biological samples were extracted with acetonitrile and then acetonitrile layer was refrigerated at -60$^{\circ}C$ for 2 hours (freezing filtration). (omitted)

  • PDF

환경성 내분비계장애물질(EDCs)의 우선관리순위 결정법 개발 및 적용 (Development and Application of a Chemical Ranking and Scoring System for the Management of Endocrine Disrupting Chemicals)

  • 임미영;박지영;지경희;이기영
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.76-89
    • /
    • 2018
  • Background: Exposure to endocrine disrupting chemicals (EDCs) has been considered one of the main causes of a range of endocrine diseases in modern society. An EDC priority list considering exposure, toxicity, and societal concern should be established for EDC management. Methods: The chemical ranking and scoring (CRS) system for EDCs was based on exposure, toxicity,and societal concern. The exposure score system was based on usage, circulation volume, bioaccumulation, and detection in consumer products. The toxicity score system was based on carcinogenicity and reproductive and developmental toxicity. The societal concern score system was based on domestic or international regulations and mass media reports. Results: A total of 165 EDCs were considered in the CRS system. The top-five priority EDCs were Bis(2-ethylhexyl) phthalate (DEHP), Benzene, Bisphenol A, Dibutyl phthalate (DBP) and Trichloroethylene. Phthalates, bisphenols and parabens were identified as priority chemical groups. Conclusion: We developed a CRS system for EDCs to identify priority EDCs for management. This will be a foundation to provide an EDC management plan based on scientific decision-making.