• 제목/요약/키워드: end-to-end scheduling

검색결과 167건 처리시간 0.048초

멀티 코어 시스템에서 통신 프로세스의 동적 스케줄링 (Dynamic Scheduling of Network Processes for Multi-Core Systems)

  • 장혜천;진현욱;김학영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.968-972
    • /
    • 2009
  • 멀티 코어 프로세서는 현재 많은 고성능 서버에 적용되어 사용되고 있다. 최근 이들 서버는 점차 높은 네트워크 대역폭 활용을 요구하고 있다. 이러한 요구를 만족시키기 위해서는 멀티 코어를 효율적으로 활용하여 네트워크 처리율을 향상시키는 방안이 필요하다. 그러나 현재 운영체제들은 멀티 코어 시스템을 멀티 프로세서 환경과 거의 동일하게 다루고 있으며 아직 멀티 코어의 고유 특성을 고려한 성능 최적화 시도는 미흡한 상태이다. 이러한 문제를 해결하기 위해서 본 논문에서는 멀티 코어의 특성을 최대한으로 고려하여 프로세스 스케줄링을 결정함으로써 통신 성능을 향상시키는 방안에 대해서 연구한다. 제안되는 프로세스 스케줄링은 멀티 코어 프로세서의 캐쉬 구조, 프로세스의 통신 집중도, 그리고 각 코어의 부하를 기반으로 해당 프로세스에게 최적의 코어를 결정하고 스케줄링한다. 제안된 기법은 리눅스 커널에 구현되었으며 측정 결과는 최신 리눅스 커널의 네트워크 처리율을 20%까지 향상시켰으며 프로세서 자원은 55% 더 절약할 수 있음을 보인다.

Preparing a Construction Cash Flow Analysis Using Building Information Modeling (BIM) Technology

  • Kim, Hyunjoo;Grobler, Francois
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Construction is a competitive industry and successful contractors must be able to win bids to obtain projects. Cash flow analysis not only determines actual profit at the end of the project, but also estimates required cash resources or cash ballances at the end of every month. Cash flow analysis is important in managing a construction project; however, it requires extensive information that is not immediately available to the general contractor. Before contractors can perform cash flow analysis, they must first complete a series of pre-requisites such as the quantity take off, scheduling, and cost estimating, followed by accurate assessments of project costs incurred and billable progress made. Consequently, cash flow analysis is currently a lengthy, uncertain process. This paper suggests improved cash flow analysis can be developed using data extraction in Building Information Modeling (BIM). BIM models contain a wealth of information and tools have been developed to automate a series of process such as quantity takeoff, scheduling, and estimating. This paper describes a prototype tool to support BIM-based, automated cash flow analysis.

무선 센서 네트워크를 위한 적응적 우선순위 채널 접근 스케쥴링을 이용한 노드 활성화 프로토콜 (A Node Activation Protocol using Priority-Adaptive Channel Access Scheduling for Wireless Sensor Networks)

  • 남재현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.469-472
    • /
    • 2014
  • S-MAC은 패킷 교한을 조정하고 idle listening을 줄이기 위해 로컬 sleep-wake 스케쥴을 사용하는 CSMA와 TDMA의 하이브리드 방식이다. 이 기법에서는 모든 노드들이 동일한 우선순위를 가지고 있기 때문에 트래픽의 양이 많은 경우 지연시간이 증가된다. 본 논문에서는 실시간 음성 스트리밍과 같은 어플리케이션에 적합한 처리량과 진송지연을 제공할 수 있는 트래픽 적응적 MAC 프로토콜을 제안한다. 제안된 프로토콜에서는 실시간에 적합한 성능을 제공하기 위해 (m,k)-firm 스케쥴링 기법을 이용한 우선순위 개념을 사용한다. 성능 평가를 위해 다양한 노드 수에 대해 패킷 전송률과 노드의 평균지연시간을 시뮬레이션을 수행했다.

  • PDF

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

강화학습과 시뮬레이션을 활용한 Wafer Burn-in Test 공정 스케줄링 (Scheduling of Wafer Burn-In Test Process Using Simulation and Reinforcement Learning)

  • 권순우;오원준;안성혁;이현서;이호열;박인범
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.107-113
    • /
    • 2024
  • Scheduling of semiconductor test facilities has been crucial since effective scheduling contributes to the profits of semiconductor enterprises and enhances the quality of semiconductor products. This study aims to solve the scheduling problems for the wafer burn-in test facilities of the semiconductor back-end process by utilizing simulation and deep reinforcement learning-based methods. To solve the scheduling problem considered in this study. we propose novel state, action, and reward designs based on the Markov decision process. Furthermore, a neural network is trained by employing the recent RL-based method, named proximal policy optimization. Experimental results showed that the proposed method outperformed traditional heuristic-based scheduling techniques, achieving a higher due date compliance rate of jobs in terms of total job completion time.

  • PDF

모듈러 셀 TFT-LCD 제조시스템의 시간 페트리네트 모델링과 성능평가 (Timed Petri-nets Modeling and Performance Evaluation of Modular Cell TFT-LCD Manufacturing System)

  • 이상문;장석호;강신준;우광방
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1303-1310
    • /
    • 1999
  • In this paper, the Timed Petri-Nets(TPN) modeling of Modular Cell Manufacturing Systems(MCMS) was investigated to overcome the limit of batch mode operation, which has been one of the most popular manufacturing types to produce an extensive industrial output and to be able to adopt to suitable and quickly changing manufacturing environments. A model of the MCMS was developed in reference to the actual TFT-LCD manufacturing system. TFT-LCD manufacturing system is not mass-productive in batch mode, but it operates in the form of MCMS which consists of a sequence of several cells with four processes of operation, including those of color filter(C/F), TFT, cell, and module. The cell process is further regrouped in those of Front-End and Back-End. For the Back-End cell process, it is reconstructed into a virtual model, consisting of three cells. The TPN modeling encompasses those properties, such as states and operations of machines, the number of buffers, and the processing time. The performance of the modeling was further examined in terms of scheduling system. The productivity in each cells was examined with respect to the change of failure rate of the cell machines and Automatic Guided Vehicles(AGV) using simulation by TPN.

  • PDF

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권9호
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구 (A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach)

  • 김영복
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

VLIW (Very Long Instruction Word) 형식 드론 FCC(Flight Control Computer)의 실시간성 개선을 위한 소프트웨어 성능 가속화 연구 (A Study on software performance acceleration for improving real time constraint of a VLIW type Drone FCC)

  • 조두산
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Most conventional processors execute program instructions in a sequential manner. On the other hand, VLIW processor can execute multiple instructions at the same time. It exploits instruction level parallelism to improve system performance. To that end, program code should be rearranged to VLIW instruction format by a compiler. The compiler determine an optimal execution order of instructions of a program code. This instruction ordering is also called instruction scheduling. The scheduling is an algorithm that decides the execution order for instruction codes in loop parts of a program so that the instruction level parallelism can be maximized. In this research, we apply an existing scheduling algorithm to a VLIW FCC and describe analysis results to further improve its performance. And, we present a solution to solve some limitation of the existing scheduling technique. By using our solution, FCC's performance can be improved upto 32% compared to the existing scheduling only setting.

수준 분해 일정계획 문제에 대한 최적 알고리듬 (An Exact Algorithm for Two-Level Disassembly Scheduling)

  • 김화중;이동호
    • 대한산업공학회지
    • /
    • 제34권4호
    • /
    • pp.414-424
    • /
    • 2008
  • Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or end-of-life products while satisfying the demand of their parts or components over a given planning horizon. This paper considers the two-level disassembly structure that describes a direct relationship between the used product and its parts or components. To formulate the problem mathematically, we first suggest an integer programming model, and then reformulate it to a dynamic programming model after characterizing properties of optimal solutions. Based on the dynamic programming model, we develop a polynomial exact algorithm and illustrate it with an example problem.