이 연구는 초등학교 3학년 학생의 수학 학습 능력 즉, 확고한 개념 형성 및 수학하는 힘의 신장과 창의력 육성을 목표로 하였다. 이러한 목표를 달성하기 위하여, 본 연구자는 2009년 1학기 동안 초등학교 3학년을 대상으로 [교과서의 내용 학습]$\rightarrow$[1차 문제 만들기]$\rightarrow$[문제 해결]$\rightarrow$[발전 문제 만들기]의 수업 모형으로, 연속 2시간의 연차시 수학 수업을 16회 실시하였다. 그 중에서 사칙계산을 중심으로 한 8회분의 학생이 만든 문제, 즉 [1차 문제 만들기]와 [발전 문제 만들기]를, 문제의 완성도 및 유창성, 유연성, 개념의 정도, 독창성, 소재 등의 5가지 요소로 분석틀을 만들어 분석하였다. 학생들은 1차 문제 만들기에서 문제의 완성도와 유창성은 더 나았고, 나눗셈과 곱셈으로 수업을 지속할수록 유연성은 점차 좋아졌다. 비교반을 설정하여 1학기 초와 말의 학업 성취도의 정도를 실험반과 비교한 결과 실험반의 학업성취도가 비교반 보다 높게 나타났다.
교수학습센터의 교수지원 프로그램 컨텐츠 분석 및 교수지원 플랫폼이 나아갈 방향에 관한 연구이다. 이를 위해 2020년 4월 문헌연구 실시, 타 대학 및 K대학의 교수지원 현황 분석, 교수자 인터뷰 분석, 전문가검증을 실시하였다. 주요 연구결과는 다음과 같다. 첫째, 24개 대학의 교수지원 프로그램 현황을 살펴본 결과, 교수법 특강, 수업컨설팅, 교수법 연구모임, 교육자료실이 대표적으로 운영되는 프로그램으로 확인되었다. 둘째, 플랫폼 기본 구조를 교원들간의 교수법에 대한 활발한 의견교환이 가능하도록 강의사례공유 게시판, 교수법 프로그램 신청이 가능하도록 교수지원 프로그램 신청 게시판, 플랫폼 활성화를 위해 Edu-tech, 교수지원 메뉴로 구성하였다. 셋째, 교수지원 플랫폼의 기본구조를 바탕으로 교수지원 플랫폼 콘텐츠를 구현하였다. 본 연구는 교수지원 프로그램 컨텐츠를 분석하고 교수지원 플랫폼이 나아갈 방향을 제시하는 연구를 실시하여 효과적인 교수지원 플랫폼 구축의 방향을 논의하였다.
과학기술 분야의 연구·개발 결과는 연구보고서 형태로 국가과학기술정보서비스(NTIS)에 제출된다. 각 연구보고서는 국가과학기술 표준 분류체계 (K-NSCC)에 따른 분류코드를 가지고 있는데, 보고서 작성자가 제출 시에 수동으로 입력하게끔 되어있다. 하지만 2000여 개가 넘는 세분류를 가지고 있기에, 분류체계에 대한 정확한 이해가 없이는 부정확한 분류코드를 선택하기 십상이다. 새로이 수집되는 연구보고서의 양과 다양성을 고려해 볼 때, 이들을 기계적으로 보다 정확하게 분류할 수 있다면 보고서 제출자의 수고를 덜어줄 수 있을 뿐만 아니라, 다른 부가 가치적인 분석 서비스들과의 연계가 수월할 것이다. 하지만, 국내에서 과학기술표준 분류체계에 기반을 둔 문서 자동 분류 연구 사례는 거의 없으며 공개된 학습데이터도 전무하다. 본 연구는 KISTI가 보유하고 있는 최근 5년간 (2013년~2017년) NTIS 연구보고서 메타정보를 활용한 최초의 시도로써, 방대한 과학기술표준 분류체계를 기반으로 하는 국내 연구보고서들을 대상으로 높은 성능을 보이는 문서 자동 분류기법을 도출하는 연구를 진행하였다. 이를 위해, 과학기술 표준분류 체계에서 과학기술 분야의 연구보고서를 분류하기에 적합한 중분류 210여 개를 선별하였으며, 연구보고서 메타 데이터의 특성을 고려한 전처리를 진행하였다. 특히, 가장 영향력 있는 필드인 과제명(제목)과 키워드만을 이용한 TK_CNN 기반의 딥러닝 기법을 제안한다. 제안 모델은 텍스트 분류에서 좋은 성능을 보이고 있는 기계학습법들 (예, Linear SVC, CNN, GRU등)과 비교하였으며, Top-3 F1점수 기준으로 1~7%에 이르는 성능 우위를 확인하였다.
우리나라는 여러 건의 여객선 사고를 겪으면서, 여객선 안전관리를 위해 다양한 제도를 운영하고 있다. 2021년 기준 우리나라 연안을 운항하는 여객선 162척 중, 차량갑판이 개방된 형태의 차도선이 105척(65 %)을 차지하고 있다. 차도선은 2~4개의 섬을 경유하는 운항 패턴을 가지고 있다. 출항지(모항)에서 안전점검은 선원과 운항관리실의 운항감독관, 해사안전감독관에 의해 실시된다. 경유지에서의 안전점검은 자체점검이 실시되는 경우가 있다. 여느 제도와 마찬가지로 제도적, 현실적 한계 등이 있다. 이를 위해 영상처리기법을 활용하여 차량을 검출하고 이를 선박 복원성 계산과 연동하는 방안을 제안하고자 본 연구를 수행하였다. 차량 검출을 위해 차영상을 이용하는 방법과 기계학습을 이용하는 방법을 사용하였다. 검출된 데이터를 선박 복원성 계산에 활용하였다. 기계학습을 통해 차량을 검출하는 경우, 차영상에 의한 차량 검출 방법보다 차량 식별에 안정적임을 알 수 있었다. 다만, 카메라가 일몰과 같은 상황에서 역광을 받는 경우와 야간과 같은 상황에서 부두와 선박 내부의 강한 조명에 의해 차량이 식별되지 않는 한계가 있었다. 안정적인 영상처리를 위해 충분한 영상 데이터 확보와 프로그램 고도화가 필요해 보인다.
연구 목적 : 본 연구의 목적은 포스트코로나 시대를 위한 기독교적 생태영성교육의 방향성과 모형을 제시하고, 기독교교육이 사적 영역을 넘어 공적 영역으로 확대되게 하는 데 있다. 연구 내용 및 방법 : 본 연구는 기독교교육학적 관점에서 포스트코로나 시대를 위해 어떠한 교육적 대안을 마련해야 하는지에 대한 질문으로 시작되었다. 현재 4차 산업혁명은 속도와 범위, 그리고 시스템에 있어 사회 전반에 걸쳐 큰 충격과 유례없는 변화들을 일으키고 있고, 코로나19는 지난 3여년의 시간동안 우리사회의 일상과 표준을 완전히 바꾸어 놓았는데, 이로 인해 포스트코로나 시대에 대한 담론이 확산되고 있기 때문이다. 특별히 오늘날 현대사회가 해결해야 할 시급한 문제 가운데 하나는 생태환경 문제인데, 이를 위해 기독교 영성교육의 측면에서 대안을 마련하려고 했다. 그것은 기독교적 생태영성교육을 진행하는 것이라고 할 수 있는데, 효과적인 교육을 위해 오늘날 생태환경 문제의 원인을 세 가지 측면(세계적, 사회적, 개인적)면에서 살펴보았다. 그런 다음, 기독교적 생태영성교육의 방향으로서 참여적 책임의 영성, 생태중심주의적 영성, 생태적 회심의 영성을 제시하였다. 이를 위한 교육의 모형은 교육 목적과 목표, 교육 방법과 내용, 교육 환경과 평가를 제시하는 방식으로 수립하였는데, 이 과정에서 교육방법으로 프로젝트기반학습(Project Based Learning)을 활용하였다. 결론 및 제언 : 본 연구를 통해 기독교교육은 개인적 차원을 넘어 교회와 가정, 더 나아가 사회적 차원으로 확대되고, 기독교인들이 의존하고 있는 생태환경 문제를 해결하며, 지속가능한 발전을 이루게 하는데 기여할 수 있게 될 것이라고 보았다.
4차 산업혁명은 지식의 생산속도가 빠르고 지식산업의 비중이 매우 증가하는 지식사회로의 전환을 의미하며 이와 관련하여 디지털 혁명이 지속되고 있다. 신기술에 의한 산업구조의 재편과 직업·직무의 변화는 교육의 변화를 가져오고 있고 디지털 기술의 발전으로 인해 경계가 없고 개별적이며 역동적인 교육이 새로운 교육의 표준이 되어 가고 있다. 이런 배경에서 정규 과정 학위보다는 신기술에 관한 나노 학위(Nano Degree)나 핵심강좌에 집중된 마이크로 디그리(microdegree)에 대한 관심도 많이 증가하고 있다. 대표적으로 미국의 유다시티(Udacity)는 직업과 연계된 온라인 나노디그리 과정을 개설해 운영하고 있고, 주요 기업들과 협업하여 기업에 필요한 핵심 교육과정을 개발 및 교육함으로 기업의 인재 확보를 효율적으로 지원하고 있다. 이렇게 온라인 직업 및 직무 교육이 활성화되면서 이제 개인 스스로가 직업능력개발에 대한 목표를 세우고 포트폴리오 방식의 지속가능한 학습을 이어갈 수 있는 환경이 갖추어 졌다. 그러나 효과적인 직업 교육을 위해서는 자동화된 개인 맞춤형 교육컨텐츠 설계가 선행되어야 한다. 이를 위해 본 논문에서는 온라인 학습시대에 직업준비를 위한 개인 맞춤형 career and course map 추천 시스템을 제안하고자 한다.
본 연구는 상이한 체제 즉, 사회주의 노동시장에서 자본주의 노동시장으로의 이행 후 성공적인 직업생활을 영위하고 있는 북한이탈주민을 대상으로 전환적 진로선택 과정을 탐색하는 것이다. 연구목적 달성을 위해 북한이탈주민의 전환적 진로선택과정은 어떠한가, 이 과정에 어떤 학습요소가 선택에 영향을 주는가? 라는 문제를 제시하였다. 현재 자신의 직업에 대한 주관적 성공감을 가지고 있으며, 경험의 과정을 풍부하고 상세하게 잘 설명할 수 있는 남성3명, 여성8명과 심층면담을 진행하였다. 방법은 Strauss & corbin(1998)이 제시한 (개방코딩, 축코딩, 선택코딩)하위범주와 범주를 관계 짓는 근거이론 방법으로 분석하였다. 결과, '관점전환'이라는 중심현상으로부터 패러다임 모형이 도출되었다. 핵심범주는 '관점을 전환하여 새로운 진로에 도전함'이었다. 전환적 진로선택 과정은 '현실인식 단계', '적극적 변화 인지단계', '지지/대처전략 단계', '성장 단계'로 시간의 흐름과 상호작용에 따른 4단계가 도출되어 진로선택 과정에서 전환학습에 따른 긍정적 반성과 계획된 우연기술의 잠재적 요소를 발견할 수 있었다. 본 연구 결과는 북한이탈주민을 위한 진로교육 및 진로상담을 위한 기초자료로 유용하게 활용될 것으로 기대된다.
본 연구의 목적은 2015 개정 중학교 실과(기술·가정) 교육과정의 '옷차림과 의복 마련' 단원을 중심으로 퍼스널 컬러를 활용한 수업안을 개발하고 실행하여, 이 수업이 중학생에게 미치는 효과를 알아보는 데 있다. 이를 위해 퍼스널 컬러를 활용한 '옷차림과 자기표현' 부분의 교육과정을 재구성하고 이에 해당하는 교수·학습 과정안과 교수·학습 자료를 개발하여 실제 학교 현장에서 실행한 뒤, 자아정체감 및 의생활 태도의 변화와 수업 만족감에 대해 알아보았다. 이 연구의 결과는 다음과 같다. 퍼스널 컬러를 활용한 '옷차림과 의복 마련' 단원의 수업 실행 결과, 사전보다 사후에 학생들의 자아정체감과 의생활 태도가 향상된 것으로 나타났다. 또한 수업 만족감에 대한 면담 조사 결과, 학생들은 수업에 대해 전반적으로 만족한 것으로 나타났다. 퍼스널 컬러를 활용한 '옷차림과 의복 마련' 단원의 수업을 중학교 가정과 의생활 수업에서 널리 활용한다면 청소년기 학생들에게 긍정적인 영향을 주고, 의미 있는 수업 자료를 찾고 있는 현장 교사들에게도 큰 도움을 줄 수 있으리라 기대한다.
전 세계적으로 지구온난화와 관련된 문제인식이 대두되면서, 도시지역에서의 탄소중립을 위해 탄소흡수원의 역할이 더욱 강조되고 있다. 정주지 탄소흡수원의 관리를 위해서는 탄소흡수원의 현황 파악이 필요하며, 이를 위해서는 많은 인력과 시간과 이에 따른 예산이 소요되게 된다. 본 연구에서는 서울시를 대상으로 기구축된 수목의 위치정보와 Sentinel-2 위성영상을 이용해 수목의 위치를 예측할 수 있는 지도를 제작했다. 이를 위해 수목 유무 데이터셋을 구축한 뒤 위성영상으로부터 구축한 식생지수 16종 정보를 이용하여 분석에 활용할 정형데이터를 생성했다. 그리고 생성된 정형데이터에 Extreme Gradient Boosting (XGBoost) 모델을 적용하여 학습 후, 수목 예측 지도를 제작했다. 이후 Shapley Additive exPlanations (SHAP) 분석을 통해 모델 학습에서 독립변수와 종속변수 간의 관계를 조사하였다. 서울의 국소 부분에 대해 제작된 지도와 세분류 토지피복지도와의 비교분석을 수행했고, 본 연구에서 제작된 수목 예측 모델의 경우 대로변 주변의 탐지하기 어려운 가로수의 경우에도 수목의 위치로 예측이 된다는 것을 확인했다.
본 연구는 한국 프로배구 리그를 체계적으로 분석하고 대표적인 머신러닝 분류 방법을 활용하여 경기 결과를 예측하고자 한다. 이를 위해 2012/2013 시즌부터 2022/2023 시즌까지의 남자 프로배구와 여자 프로배구 리그 경기 데이터를 수집하였으며, 이 데이터는 경기 세부 내용을 상세하게 포함하고 있다. 데이터는 각 경기를 두 팀으로 분리한 경우와 홈팀을 기준으로 상대팀과의 성과 차이로 데이터를 가공한 경우로 두 가지 다른 데이터 구조를 모델에 적용했다. 이를 통해 남자 프로배구와 여자 프로배구 각각에 대해 총 4개의 예측 모형을 구축했다. 경기 종료 전에는 모형에서 사용하는 세부 변수 값들을 알 수 없기 때문에, 오늘 경기 직전까지의 3~4 경기의 결과를 전처리하여 이를 변수로 사용했다. 본 연구에서는 Decision Tree, Logistic Regression, Bagging, Random Forest, Xgboost, Adaboost, Light GBM 같은 다양한 머신러닝 기법을 분류에 활용하여, Random Forest를 사용한 모델이 가장 우수한 예측 성능을 보였다. 최종 선택한 모형에 대해 변수 중요도 그림과 부분 의존도 그림을 확인한 결과 성별과 데이터 구조에 따라 중요한 변수들이 다른 것으로 나타났지만, 공통적으로 세트 성공 수, 블로킹 득점, 범실 개수가 가장 중요한 변수임을 알 수 있었다. 본 승패 예측 모델은 사후적 예측이 아닌 경기 종료 전 사전 예측이 가능한 모형이라는 점에서 차별성을 가지며, 우리의 분석이 한국 프로배구 팀들에게 전략적 추론이 될 수 있을 것이라 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.