• Title/Summary/Keyword: end-pipe

Search Result 268, Processing Time 0.027 seconds

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.

Development of Novel Joint Device for a Disposal Canister in Deep Borehole Disposal (고준위폐기물 심부시추공 처분을 위한 처분용기 접속장치의 개발)

  • LEE, Minsoo;LEE, Jongyoul;JI, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.261-270
    • /
    • 2018
  • In this study, to replace the 'J-slot joint', a joint device between a disposal canister and an emplacement jig in Deep Borehole Disposal process, a novel joint device was designed and tested. The novel joint device was composed of a wedge on top of a disposal canister and a hook box at the end of a winch system. The designed joint device had merits in that it can recombine an emplaced canister freely without the replacement of the joint component. Moreover, it can be applied to various emplacement jigs such as drill pipes, wire-lines, and coiled tubing. To demonstrate the designed joint device, the joint device (${\Phi}110mm$, H 148 mm), a twin canister string (${\Phi}140mm$, H 1,105 mm), and a water tube (${\Phi}150mm$, H 1,500 mm) as a borehole model were manufactured at 1/3 scale. As deployment muds, Na-type bentonite (MX-80) and Ca-type (GJ II) bentonite muds were prepared at solid contents of 7wt% and 28wt%, respectively. The manufactured joint device showed good performance in pure water and viscous muds, with an operation speed of $10m{\cdot}min^{-1}$. It was concluded that the newly developed joint device can be used for the emplacement and retrieval of a deep disposal canister, below 3~5 km, in the future.

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

Estimation on End Vertical Bearing Capacity of Double Steel-Concrete Composite Pile Using Numerical Analysis (수치해석을 이용한 이중 강-콘크리트 합성말뚝 연직지지력 평가)

  • Jeongsoo, Kim;Jeongmin, Goo;Moonok, Kim;Chungryul, Jeong;Yunwook, Choo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.5-15
    • /
    • 2022
  • Conventionally, because evaluation methods of the bearing capacity for double steel pipe-concrete composite pile design have not been established, the conventional vertical bearing capacity equations for steel hollow pile are used. However, there are severe differences between the predictions from these equations, and the most conservative one among vertical bearing capacity predictions are conventionally adopted as a design value. Consequently, the current prediction method for vertical bearing capacity of composite pile prediction composite pile causes design reliability and economical feasibility to be low. This paper investigated mechanical behaviors of a new composite pile, with a cross-section composed of double steel pipes filled with concrete (DSCT), vertical bearing capacities were analyzed for several DSCT pile conditions. Axisymmetric finite element models for DSCT pile and surrounding ground were created and they were used to analyze effects on behaviors of DSCT pile pile by embedding depth, stiffness of plugging material at pile tip, height of plugging material at pile tip, and rockbed material. Additionally, results from conventional design prediction equations for vertical bearing capacity at steel hollow pile tip were compared with that from numerical results, and the use of the conventional equations for steel hollow pile was examined to apply to that for DSCT pile.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

The Characteristics of NOx Formation in Stainless Mixed Acid Pickling Process and The Effect of Hydrogen Peroxide Addition on NOx Formation (스테인레스 혼산 산세 공정에서 NOx 생성 특성과 과산화수소첨가에 따른 영향)

  • Yoon, Jeyong;Yie, Jaeeui;Lee, Sujin;Lee, Younghwan;Huh, Jin;Park, Sungkook;Chun, Heedong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.96-108
    • /
    • 1996
  • $NO_x$ is mainly emitted from mixed acid pickling process in the stainless industry and its impact to the environment has been worried over. This study which may be considered as one of the development of clean technologies, differing from the traditional end pipe technology is about how to reduce $NO_x$ emission through the modification of corresponding process. This study consists of two parts. First, the influence of various reaction parameters in a acid pickling process on $NO_x$ emission was investigated. Second, the influence of hydrogen peroxide on $NO_x$ formation, which is known as inhibitor of $NO_x$ emission, was investigated. Major findings in this study are as follows. The important reaction parameters which have a great influence on $NO_x$ emission are the reaction temperature and the concentration of fluoric acid. The concentration of nitric acid, some of which results in $NO_x$ compound is not as important as the concentration of fluoric acid. Synthetic mixed acid of nitric acid and fluoric acid itself in absent of pickling plate contributed the $NO_x$ emission, however, its impact was negligible in terms of quantity. The addition of hydrogen peroxide to the acid pickling process significantly contributed to the reduction of $NO_x$ emission and successfully achieved 80% reduction of $NO_x$ emission at the condition of $9.51{\times}10^{-2}mole\;hydrogen\;peroxide/m^2$ pickling area. This result was compared to literature value from Avesta steel process, indicating a sixth of hydrogen peroxide addition of Avesta's in achieving a same amount of $NO_x$ reduction. The region of the economic hydrogen peroxide addition per unit area of plate to be pickled from the result of this study was established.

  • PDF

The Effect of Rootzone Mix and Compaction on Nitrogen Leaching in Kentucky bluegrass (토양의 종류와 답압이 켄터키블루그래스 토양층에서 질소용탈에 미치는 영향)

  • Lee, Sang-Kook;Frank, Kevin W.;Crum, James R.
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • Research on nitrate-nitrogen ($NO_3-N$) leaching in turfgrass indicates that in most cases leaching poses minimal risk to the environment. Although there have been many studies investigating $NO_3-N$ leaching, there has been little research to investigate the effect of compaction level and rootzone mix on nitrogen (N) leaching. The research objective is to determine the effect of compaction level and rootzone mix on nitrogen leaching. The four rootzone mixes are 76.0:24.0, 80.8:19.2, 87.0:13.0 and 93.7:6.3 % (sand:soil). The four levels of compaction energies are 1.6, 3.0, 6.1, and 9.1 J $cm^{-2}$. Nitrogen was applied using urea at a rate of 147 kg $ha^{-1}$ split among three applications. Rootzone was packed into a polyvinylchloride pipe with a perforated bottom to facilitate drainage. Rootzone depth was 30 cm over a 5 cm gravel layer. Each column was sodded with Poa pratensis L. Hoagland solution designed for coolseason grasses, minus N, was used to ensure adequate nutrition in the rootzone. Turf grass quality and clipping yield were recorded from each tube at two-week intervals. The clippings were oven-dried at a temperature of $67^{\circ}C$ for 24 h and weighed. At the end of the study, root dry weight was determined by washing and oven-drying samples at $67^{\circ}C$ for 24 h. Leachate solution was collected weekly for analysis. More than 6.1 J $cm^{-2}$ of compaction energy increased possibilities of surface runoff. The compaction energy between 3.0 and 6.1 J $cm^{-2}$ produced more clipping dry weight and less N leaching than 9.1 J $cm^{-2}$.