• Title/Summary/Keyword: end-gas temperature

Search Result 154, Processing Time 0.021 seconds

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

A study of Flame Arrestor's Spring Structural Analysis (폭연방지기 스프링의 구조해석에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Kim, Jun-Ho;Choi, Min-Seon;Yang, Chang-Jo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.69-69
    • /
    • 2017
  • Flame arrestor as end of line flame arrester for endurance burning prevents a light-back at deflagration and stabilized burning (during and after endurance burning) of potentially explosive vapor-air and gas-air mixtures at the end of vent pipes. In a flame arrestor, spring is an important part. The spring load as well as the spring's elasticity determine when the hood is opened. In addition, the spring have to work in high temperature condition due to gas burning. Therefore, it is necessary to analyze mechanical load and elasticity of spring when gas is burned. Based on the dynamic calculation on working process of a specific flame arrestor, analysis of spring is taken. A three dimensional model for spring burned in flame arrestor by using CFD simulation. Results of the CFD analysis are input in FEM simulation to analyze structure of the spring. The simulation results can predict and estimate the spring's load and elasticity at variation of the spring's deflection. Moreover, the obtained result can provide makers with references to optimize design of spring as well as flame arrestor.

  • PDF

Reaction of Gae-Phase Atomic Hydrogen with Chemisorbed Hydrogen Atoms on an Iron Surface

  • Kim, M. S.;Ree, J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.985-994
    • /
    • 1997
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on Fe(110) surface is studied by use of classical trajectory procedures. Flow of energy between the reaction zone and bulk solid phase has been treated in the generalized Langevin equation approach. A London-Eyring-Polanyi-Sato energy surface is used for the reaction zone interaction. Most reactive events are found to occur in strong single-impact collisions on a subpicosecond scale via the Eley-Rideal mechanism. The extent of reaction is large and a major fraction of the available energy goes into the vibrational excitation of H2, exhibiting a vibrational population inversion. Dissipation of reaction energy to the heat bath can be adequately described using a seven-atom chain with the chain end bound to the rest of solid. The extent of reaction is not sensitive to the variation of surface temperature in the range of Ts=0-300 K in the fixed gas temperature, but it shows a minimum near 1000 K over the Tg=300-2500 K.

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

GC Capillary Column Installation (가스 크로마토그래피 캐필러리 컬럼 설치 가이드)

  • Matt James;Kirsty Ford
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.2.1-2.6
    • /
    • 2024
  • This article provides detailed instructions for the correct installation, maintenance, and troubleshooting of capillary gas chromatography (GC) columns. It emphasizes the importance of proper installation to ensure optimal performance and longevity of the column. The document covers various aspects such as column trimming, installation, conditioning, testing, storage, and ferrule selection. The installation process involves ensuring that the heated zones of the GC are cool before placing the column cage in the column oven. It is essential to avoid sharp bends or stress on the capillary column during installation and to connect the front end of the column into the GC inlet at the recommended insertion distance. The document also provides guidance on trimming the column, including the use of a ceramic wafer or capillary column cutter to achieve a clean, burr-free cut. For previously used columns, it recommends removing any capillary caps, positioning the nut and ferrule, and trimming 1-2 cm from the column. After installation, the column should be purged with carrier gas to remove any oxygen and avoid oxidizing the column. Conditioning the column involves ramping to the upper isothermal temperature limit and maintaining this temperature for a specified duration. It is crucial to maintain carrier gas flow during conditioning and not exceed the upper temperature limit of the column to avoid phase damage. The document also discusses testing column performance using a suitable method and performing a test injection to assess performance. It provides recommendations for column storage, including flame-sealing the capillary ends or using retention gaps for long-term storage. Additionally, it emphasizes the importance of routine maintenance and replacement of GC consumables to extend the column's lifetime. Ferrule selection is another important aspect covered in the article, with a variety of ferrule materials available for different applications. The characteristics of common ferrule options are presented in a table, including temperature limits, reusability, and suitability for specific detector types.

  • PDF

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

Kinetics of the Low-temperature Pyrolysis of Mixed Plastics in the Batch Reactor (회분식반응기에서의 혼합 플라스틱의 저온열분해 kinetics)

  • Cha, Wang Seog;Oh, Myung Seog;Jang, Hyun Tae;Tae, Beomseok
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.540-544
    • /
    • 2008
  • Pyrolytic characteristics of mixed plastics containing 22 wt.% HDPE, 17 wt.% LDPE, 27 wt.% PP, 12 wt.% PS, 16 wt.% ABS, 6 wt.% PVC have been studied in the batch-type microreactor of stainless steel. Thermal degradation experiments were performed at temperature of $410{\sim}450^{\circ}C$. The yield of each pyrolytic products were obtained by the weight measurement and molecular weight distribution of pyrolytic liquid products determined by the GC-SIMDIS method. It was shown that the yield and molecular weight of pyrolytic liquid product were decreased with the increase of reaction temperature and time. It was know that 20wt% of PVC composing of the mixed plastics was converted to the gas products of chloride during the pyrolysis process. The chain-end scission rate parameter was determined to be 50.2 kcal/mole of mixed plastics by the Arrhenius plot.

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

A Study on the Condensation Performance of Curtain-wall Window in High-Rise Residential Building (초고층 주거건물 커튼월의 창호부 결로 성능평가에 관한 연구)

  • Seok Ho-Tae;Chung Man-Seok;Kwak Hyun-Chul;Kwon Jong-Wook
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.81-89
    • /
    • 2005
  • The purpose of this thesis is thermal performance simulation about various type that can apply in the high-rise residential building to estimate condensation performance of window that is consisted of frame and glazing in curtain wall. The result of this thesis are summarized as follows. First, condensation occurrence point when relative humidity is $30{\cdot}40{\cdot}50\%$ is shortest Low-e double glass. Difference by type of gas and spacer was a little by $2{\~}6$ cm, among it, the case that apply krypton in gas and the case that apply double seal in spacer were less condensation occurrence distribution. Second, when analyzed improved proposal of window and existing plan through simulation, improved proposal is superior from general side of the interior and exterior temperature, thermal break surrounding temperature and temperature of frame end, condensation occurrence point etc. Therefore, if it was used improved proposal with effect that improve in curtain wall of high-rise residential building, it may improve window condensation performance of curtain wall.

On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine (50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석)

  • Kim, Su-Yong;Park, Mu-Ryong;Jo, Su-Yong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF