• Title/Summary/Keyword: end-coupled

Search Result 250, Processing Time 0.023 seconds

A study on the active phased array antennas with slotline coupling (슬롯라인 결합을 이용한 능동 위상배열안테나에 관한 연구)

  • Mun, Cheol;Kim, Seon-Taek;Yoon, Young-Joong;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.981-989
    • /
    • 1997
  • In this paper, the 5-element active phased array antennas coupled through slotline between elements are designed and fabricated. A recent studies on the active phased array antennas using the transmission line coupling which can be designed to provide strong coupling and the appropriate coupling phase. But this sturucture has limitation of expanding in two dimensions for planar active phased array antennas and distortion of the radiation pattern caused by coupling network. Thus our work proposes the slotline coupling structure asthe broadband coupling network for the active phased array antenna. In experiment, 5-elements active phased array antenas have steering range from -30.deg. to 20.deg. off broadside as the free-running frequencies of end elements are controlled. The overall results show that the proposed slotline coupling structure is suited for the coupling network in the actie phased array antenna system. And the proposed coupling structire solves the expansion problem and eliminates the distortion of the radiation pattern caused by the spurious radiation of the transmission line coupling network. Thus thiscan be expanded to two dimensional coupling network for the planar active phased array antenna system.

  • PDF

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid

  • Saadati, Hassan;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.639-647
    • /
    • 2018
  • In this study, the effects of selecting water/silver nanofluid as both a coolant and a reactivity controller during the first operating cycle of a light water nuclear reactor are investigated. To achieve this, coupled neutronic-thermo-hydraulic analysis is employed to simulate the reactor core. A detailed VVER1000/446 reactor core is modeled in monte carlo code (MCNP), and the model is verified using the porous media approach. Results show that the maximum required level of silver nanoparticles is 1.3 Vol.% at the beginning of the cycle; this value drops to zero at the end of cycle. Due to substitution of water/boric acid with water/Ag nanofluid, reactor operation time at maximum power extends to 357.3 days, and the energy generation increases by about 27.3%. The higher negative coolant temperature coefficient of reactivity in the presence of nanofluid in comparison with the water/boric acid indicates that the reactor is inherently safer. Considering the safety margins in the presence of the nanofluid, minimum departure from nucleate boiling ratio is calculated to be 2.16 (recommendation is 1.75).

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures (복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론)

  • Kim, Jun-Sik;Han, Jang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

Cashew Nut Oil: Extraction, Chromatographic and Rheological Characterisation.

  • Vincent Okechuwku ANIDIOBU;Chioma Oluchi ANIDIOBU
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.4
    • /
    • pp.11-18
    • /
    • 2023
  • Oil was extracted from cashew nuts. The physicochemical parameters of the oil were determined. A chromatographic assay of the oil was carried out using Gas Chromatography-Mass Spectrometry. Seventeen compounds were detected: Phenol, Phenol 2-methyl-, Cyclohexene 4, 4-dimethyl-, m-Fluoro-2-diazoacetophenone 4-dimethyl-, Tetradecanoic acid, Phenol 4-octyl-, n-Hexadecanoic acid. Others are 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Hexadecanoic acid methyl ester, Methyl stearate, Dodecanoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid (Z, Z, Z)-, Oleic acid, Octadecanoic acid, Tetracosanoic acid and 9-Octadecenoic acid methyl ester. Among the components are omega three and omega six essential free fatty acids. The rheological profiling and flow properties of cashew nut oil were determined using a Programmable Rheometer. Cashew nut oil exhibits slight dilatant behaviour at the low end of shear rate. The long chain and high molecular weight of its constituents controlled its rheology. Long-chained 9-Octadecenoic acid methyl ester, 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Tetracosanoic acid and methyl stearate, coupled with their high molecular weights are responsible for the shear thickening effect observed. Two models, Carreau-Yasuda and Ostwald-de Waele Power Law were employed to fit the rheological data. The Carreau-Yasuda model followed well the data.

Comparison of support vector machines enabled WAVELET algorithm, ANN and GP in construction of steel pallet rack beam to column connections: Experimental and numerical investigation

  • Hossein Hasanvand;Tohid Pourrostam;Javad Majrouhi Sardroud;Mohammad Hasan Ramasht
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.19-28
    • /
    • 2023
  • This paper describes the experimental investigation of steel pallet rack beam-to-column connec-tions. Total behavior of moment-rotation (M-φ) curve and the effect of particular characteristics on the behavior of connection were studied and the associated load strain relationship and corre-sponding failure modes are presented. In this respect, an estimation of SPRBCCs moment and rotation are highly recommended in early stages of design and construction. In this study, a new approach based on Support Vector Machines (SVMs) coupled with discrete wavelet transform (DWT) is designed and adapted to estimate SPRBCCs moment and rotation according to four input parameters (column thickness, depth of connector and load, beam depth,). Results of SVM-WAVELET model was compared with genetic programming (GP) and artificial neural networks (ANNs) models. Following the results, SVM-WAVELET algorithm is helpful in order to enhance the accuracy compared to GP and ANN. It was conclusively observed that application of SVM-WAVELET is especially promising as an alternative approach to estimate the SPRBCCs moment and rotation.