• Title/Summary/Keyword: encoder- decoder

Search Result 454, Processing Time 0.027 seconds

Real-time Implementation of the AMR Speech Coder Using $OakDSPCore^{\circledR}$ ($OakDSPCore^{\circledR}$를 이용한 적응형 다중 비트 (AMR) 음성 부호화기의 실시간 구현)

  • 이남일;손창용;이동원;강상원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.34-39
    • /
    • 2001
  • An adaptive multi-rate (AMR) speech coder was adopted as a standard of W-CDMA by 3GPP and ETSI. The AMR coder is based on the CELP algorithm operating at rates ranging from 12.2 kbps down to 4.75 kbps, and it is a source controlled codec according to the channel error conditions and the traffic loading. In this paper, we implement the DSP S/W of the AMR coder using OakDSPCore. The implementation is based on the CSD17C00A chip developed by C&S Technology, and it is tested using test vectors, for the AMR speech codec, provided by ETSI for the bit exact implementation. The DSP B/W requires 20.6 MIPS for the encoder and 2.7 MIPS for the decoder. Memories required by the Am coder were 21.97 kwords, 6.64 kwords and 15.1 kwords for code, data sections and data ROM, respectively. Also, actual sound input/output test using microphone and speaker demonstrates its proper real-time operation without distortions or delays.

  • PDF

A Real-time H.264 to MPEG-2 Transcoding for Ship to Shore Communication (선박-육지간 통신을 위한 실시간 H.264 to MPEG-2 트랜스코딩)

  • Son, Nam-Rye;Jeong, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.90-102
    • /
    • 2011
  • Recently, the grade of users using wireless communication services which transmits and re-transmits to the signal via the broadcasting satellite have a variety. However the ships not preparing of H.264 standard devices should not received the realtime data because the broadcasting stations have transmitted the compressed video data through the satellite communication. Therefore this paper proposes H.264 to MPEG-2 transcoding for the ships using MPEG-2 devices. Proposed method improves a speed and object quality in H.264 to MPEG-2 transcoding by analysis features of macroblock modes in H.264. In the Intra mode of P-frame, it proposes new method by computing coincidence proportion after comparing of Intra mode methods of H.264 and MPEG-2. In the Inter mode, it proposes a PMV(predictive motion vector) considering movement of motion vectors in H.264 decoder. we reuses a PMV directly as like the final MV in MPEG-2 encoder and refinements the MV after coincidence ratio comparing of variable motion vectors of H.264 and these of MPEG-2. The experimental results from proposed method show a considerable reduction in processing time, as much as 70% and 67% respectively, with a small objective quality reduction in PSNR.

Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition (라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응)

  • Jeong, Hyeonjae;Goo, Jahyun;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.

Signaling Method of Multiple Motion Vector Resolutions Using Contradiction Testing (모순 검증을 통한 다중 움직임 벡터 해상도 시그널링 방법)

  • Won, Kwanghyun;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.107-118
    • /
    • 2015
  • Although most current video coding standards set a fixed motion vector resolution like quarter-pel accuracy, a scheme supporting multiple motion vector resolutions can improve the coding efficiency of video since it can allow to use just required motion vector accuracy depending on the video content and at the same time to generate more accurate motion predictor. However, the selected motion vector resolution for each motion vector is a signaling overhead. This paper proposes a contradiction testing-based signaling scheme of the motion vector resolution. The proposed method selects a best resolution for each motion vector among multiple candidates in such a way to produce the minimum amount of coded bits for the motion vector. The signaling overhead is reduced by contradiction testing that operates under a predefined criterion at both encoder and decoder with a purpose of pruning irrelevant candidate motion vector resolutions from signaling responsibility. Experimental results verified that the proposed scheme is effective in reducing coded motion information by achieving its $Bj{\o}ntegaard$ delta bit rate (BDBR) gain of about 4.01% on average (and up to 15.17%) compared to the conventional scheme with a fixed motion vector resolution.

Automatic Text Summarization based on Selective Copy mechanism against for Addressing OOV (미등록 어휘에 대한 선택적 복사를 적용한 문서 자동요약)

  • Lee, Tae-Seok;Seon, Choong-Nyoung;Jung, Youngim;Kang, Seung-Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • Automatic text summarization is a process of shortening a text document by either extraction or abstraction. The abstraction approach inspired by deep learning methods scaling to a large amount of document is applied in recent work. Abstractive text summarization involves utilizing pre-generated word embedding information. Low-frequent but salient words such as terminologies are seldom included to dictionaries, that are so called, out-of-vocabulary(OOV) problems. OOV deteriorates the performance of Encoder-Decoder model in neural network. In order to address OOV words in abstractive text summarization, we propose a copy mechanism to facilitate copying new words in the target document and generating summary sentences. Different from the previous studies, the proposed approach combines accurate pointing information and selective copy mechanism based on bidirectional RNN and bidirectional LSTM. In addition, neural network gate model to estimate the generation probability and the loss function to optimize the entire abstraction model has been applied. The dataset has been constructed from the collection of abstractions and titles of journal articles. Experimental results demonstrate that both ROUGE-1 (based on word recall) and ROUGE-L (employed longest common subsequence) of the proposed Encoding-Decoding model have been improved to 47.01 and 29.55, respectively.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Cross-Lingual Style-Based Title Generation Using Multiple Adapters (다중 어댑터를 이용한 교차 언어 및 스타일 기반의 제목 생성)

  • Yo-Han Park;Yong-Seok Choi;Kong Joo Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.341-354
    • /
    • 2023
  • The title of a document is the brief summarization of the document. Readers can easily understand a document if we provide them with its title in their preferred styles and the languages. In this research, we propose a cross-lingual and style-based title generation model using multiple adapters. To train the model, we need a parallel corpus in several languages with different styles. It is quite difficult to construct this kind of parallel corpus; however, a monolingual title generation corpus of the same style can be built easily. Therefore, we apply a zero-shot strategy to generate a title in a different language and with a different style for an input document. A baseline model is Transformer consisting of an encoder and a decoder, pre-trained by several languages. The model is then equipped with multiple adapters for translation, languages, and styles. After the model learns a translation task from parallel corpus, it learns a title generation task from monolingual title generation corpus. When training the model with a task, we only activate an adapter that corresponds to the task. When generating a cross-lingual and style-based title, we only activate adapters that correspond to a target language and a target style. An experimental result shows that our proposed model is only as good as a pipeline model that first translates into a target language and then generates a title. There have been significant changes in natural language generation due to the emergence of large-scale language models. However, research to improve the performance of natural language generation using limited resources and limited data needs to continue. In this regard, this study seeks to explore the significance of such research.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Speech Reinforcement Based on G.729A Speech Codec Parameter Under Near-End Background Noise Environments (근단 배경 잡음 환경에서 G.729A 음성부호화기 파라미터에 기반한 새로운 음성 강화 기법)

  • Choi, Jae-Hun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.392-400
    • /
    • 2009
  • In this paper, we propose an effective speech reinforcement technique base on ITU-T G.729A CS-ACELP codec under the near-end background noise environments. In general, since the intelligibility of the far-end speech for the near-end listener is significantly reduced under near-end noise environments, we require a far-end speech reinforcement approach to avoid this phenomena. In contrast to the conventional speech reinforcement algorithm, we reinforce the excitation signal of the codec's parameters received from the far-end speech signal based on the G.729A speech codec under various background noise environments. Specifically, we first estimate the excitation signal of ambient noise at the near-end through the encoder of the G.729A speech codec, reinforcing the excitation signal of the far-end speech transmitted from the far-end. we specially propose a novel approach to directly reinforce the excitation signal of far-end speech signal based on the decoder of the G.729A. The performance of the proposed algorithm is evaluated by the CCR (Comparison Category Rating) test of the method for subjective determination of transmission quality in ITU-T P.800 under various noise environments and shows better performances compared with conventional SNR Recovery methods.