• Title/Summary/Keyword: encoder- decoder

Search Result 454, Processing Time 0.029 seconds

Interference Pattern Analysis in the Optical CDMA system using the SCAE and SCAD (SCAE와 SCAD를 이용한 광 CDMA시스템에서 간섭패턴 분석)

  • Kang, Tae-Gu;Choi, Jae-Kyong;Park, Chan-Young;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • We have analyzed optical matched filters considering the third order signals in the optical code division multiple access (CDMA) system based on optical series coupler access encoder (SCAE) and series coupler access decoder (SCAD). In previous studies, the performance evaluation of the optical CDMA system using SCAE and SCAD was not sufficiently accurate because they analyzed system performance only considering the first order signals. Since optical SCAE and SCAD intrinsically have high order signals of various patterns as the number of coupler increases, they change auto- and cross-correlation intensities. Thus, it is necessary to investigate properties of the third order signals so that we may analyze the exact performance of system. In this paper, we mathematically interpret the optical signals up to the third order, and analyzed the effects of th third order signals on auto- and cross-correlation intensities. In result, as ${\alpha}$(coupling coefficient) value increases, the intensity of the third order signals increases. It is found that the peak to side-lobe ratio considering the third order signals is degraded by 3.75 dB at N(coupler number)=5 and ${\alpha}$=0.5. Also if threshold value in receiver is set by main-lobe peak of the first order signals, it is found that the number of users in an optical CDMA system is limited because the intensity peak of side-lobes is raised by the third order signals.

  • PDF

Wyner-Ziv Video Compression using Noise Model Selection (잡음 모델 선택을 이용한 Wyner-Ziv 비디오 압축)

  • Park, Chun-Ho;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.58-66
    • /
    • 2009
  • Recently the emerging demands of the light-video encoder promotes lots of research efforts on DVC (Distributed Video Coding). As an appropriate video compression method, DVC has been studied, and Wyner-Ziv (WZ) video compression is its one representative structure. The WZ encoder splits the image into two kinds of frames, one is key frame which is compressed by conventional intra coding, and the other is WZ frame which is encoded by WZ coding. The WZ decoder decodes the key frame first, and estimates the WZ frame using temporal correlation between key frames. Estimated WZ frame (Side Information) cannot be the same as the original WZ frame due to the absence of the WZ frame information at decoder. As a result, the difference between the estimated and original WZ frames are regarded as virtual channel noise. The WZ frame is reconstructed by removing noise in side information. Therefore precise noise estimation produces good performance gain in WZ video compression by improving error correcting capability by channel code. But noise cannot be estimated precisely at WZ decoder unless there is good WZ frame information, and generally it is estimated from the difference of corresponding key frames. Also the estimated noise is limited by comparing with frame level noise to reduce the uncertainty of the estimation method. However these methods cannot provide good noise estimation for every frame or each bit plane. In this paper, we propose a noise nodel selection method which chooses a better noise model for each bit plane after generating candidate noise models. Experimental result shows PSNR gain up to 0.8 dB.

Performance Analysis of an Optical CDMA System for multi-user Environment (다중 사용자 환경에서의 광 CDMA 시스템 성능 분석)

  • 전상영;김영일;이주희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1134-1141
    • /
    • 1999
  • In this paper, we implement an optical code division multiple access(OCDMA) system and analyze the performance of the implemented system. In the implemented system, a transmitter encodes input data into optical pulses by using laser diode, and spreads the encoded pulses in an encoder which consists of 4 stage delay lines. The decoder which is the same structure as that of encoder delays and combines the spreaded pulses, and thus recovers the original data. At first, we discuss the auto- and cross-correlations of OCDMA signals under both environments of single user and multi-users, and then verify the simulation results with experimental results. We also evaluate the effect of a number of stages of delay line and code length on the system performance through computer simulations. As experimental results we can see that if the decoder have the same configuration as that of encoder, the peak auto-correlation characteristics can be achieved, and thus we can recover the original data from received data. As simulation results we can see that although bit error rate decreases as code length decreases or the number of stage of delay line increases, it is difficult to implement the system because the pulse width becomes narrow. From the results, we can apply CDMA technologies to optical communication networks.

  • PDF

Voting-based Intra Mode Bit Skip Using Pixel Information in Neighbor Blocks (이웃한 블록 내 화소 정보를 이용한 투표 결정 기반의 인트라 예측 모드 부호화 생략 방법)

  • Kim, Ji-Eon;Cho, Hye-Jeong;Jeong, Se-Yoon;Lee, Jin-Ho;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.498-512
    • /
    • 2010
  • Intra coding is an indispensable coding tool since it can provide random accessibility as well as error resiliency. However, it is the problem that intra coding has relatively low coding efficiency compared with inter coding in the area of video coding. Even though H.264/AVC has significantly improved the intra coding performance compared with previous video standards, H.264/AVC encoder complexity is significantly increased, which is not suitable for low bit rate interactive services. In this paper, a Voting-based Intra Mode Bit Skip (V-IMBS) scheme is proposed to improve coding efficiency as well as to reduce encoding time complexity using decoder-side prediction. In case that the decoder can determine the same prediction mode as what is chosen by the encoder, the encoder does not send that intra prediction mode; otherwise, the conventional H.264/AVC intra coding is performed. Simulation results reveal a performance increase up to 4.44% overall rate savings and 0.24 dB in peak signal-to-noise ratio while the frame encoding speed of proposed method is about 42.8% better than that of H.264/AVC.

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Hardware Design of In-loop Filter for High Performance HEVC Encoder (고성능 HEVC 부호기를 위한 루프 내 필터 하드웨어 설계)

  • Park, Seungyong;Im, Junseong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes efficient hardware structure of in-loop filter for a high-performance HEVC (High Efficiency Video Coding) encoder. HEVC uses in-loop filter consisting of deblocking filter and SAO (Sample Adaptive Offset) to improve the picture quality in a reconstructed image due to a quantization error. However, in-loop filter causes an increase in complexity due to the additional encoder and decoder operations. A proposed in-loop filter is implemented as a three-stage pipeline to perform the deblocking filtering and SAO operation with a reduced number of cycles. The proposed deblocking filter is also implemented as a six-stage pipeline to improve efficiency and performs a new filtering order for efficient memory architecture. The proposed SAO processes six pixels parallelly at a time to reduce execution cycles. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 131K logic gates in TSMC $0.13{\mu}m$ process. At 164MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 60fps in real time.

Parallel Injection Method for Improving Descriptive Performance of Bi-GRU Image Captions (Bi-GRU 이미지 캡션의 서술 성능 향상을 위한 Parallel Injection 기법 연구)

  • Lee, Jun Hee;Lee, Soo Hwan;Tae, Soo Ho;Seo, Dong Hoan
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1223-1232
    • /
    • 2019
  • The injection is the input method of the image feature vector from the encoder to the decoder. Since the image feature vector contains object details such as color and texture, it is essential to generate image captions. However, the bidirectional decoder model using the existing injection method only inputs the image feature vector in the first step, so image feature vectors of the backward sequence are vanishing. This problem makes it difficult to describe the context in detail. Therefore, in this paper, we propose the parallel injection method to improve the description performance of image captions. The proposed Injection method fuses all embeddings and image vectors to preserve the context. Also, We optimize our image caption model with Bidirectional Gated Recurrent Unit (Bi-GRU) to reduce the amount of computation of the decoder. To validate the proposed model, experiments were conducted with a certified image caption dataset, demonstrating excellence in comparison with the latest models using BLEU and METEOR scores. The proposed model improved the BLEU score up to 20.2 points and the METEOR score up to 3.65 points compared to the existing caption model.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

Design and Implementation of 4D-8PSK TCM Simulator for Satellite Communication Systems (4D-8PSK TCM 위성통신 시스템 시뮬레이터 설계 및 구현)

  • Kim, Dohwook;Kim, Joongpyo;Kim, Sanggoo;Yoon, Dongweon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • In this paper, we design and implement the simulator for the transmitter and receiver of 4D-8PSK TCM with 2.0, 2.25, 2.5, and 2.75 bits/symbol-channel transmission efficiency recommended by the CCSDS for satellite communications, and then analyze the BER performance of 4D-8PSK TCM system in AWGN channel. The transmitter of 4D-8PSK TCM is designed in accordance with the recommendation in the CCSDS standard. Meanwhile, for the receiver design of 4D-8PSK TCM, we design the differential decoder generalizing the differential encoder/decoder scheme. The trellis decoding algorithm is designed by applying the auxiliary trellis information and the Viterbi algorithm, and an 8-dimensional constellation mapper equation given in the CCSDS standard is deconstructed to design constellation mapper. Especially, we present the optimized receiver for 4D-8PSK TCM system by investigating the BER performances for the traceback lengths in the Viterbi decoder through computer simulations..