• Title/Summary/Keyword: emulsions

Search Result 352, Processing Time 0.025 seconds

Effect of Homogenization Pressure and Supplementation with Sucrose Fatty Acid Ester on the Physical Properties of Dairy Cream-based Emulsions

  • Seo, Chan-Won;Kang, Shin-Ho;Shin, Yong-Kook;Yoo, Byoungseung
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.476-486
    • /
    • 2018
  • In this study, the droplet size distribution, rheological properties, and stability of dairy cream-based emulsions homogenized with different sucrose fatty acid ester (SFAE, a non-ionic small-molecule emulsifier) concentrations (0.08%, 0.16%, and 0.24% w/w) at different homogenization pressures (10 MPa and 20 MPa) were examined. Homogenization at a high pressure resulted in a smaller droplet size and narrower droplet size distribution. The D[4,3] (volume-weighted mean) and D[3,2] (surface-weighted mean) values of the emulsions decreased with an increase in the SFAE concentration. The flow properties of the emulsions homogenized with SFAE showed shear-thinning (n=0.21-0.46) behavior. The apparent viscosity (${\eta}_{a,10}$) and consistency index (K) of the homogenized emulsions were lower than those of the control sample that is non-homogenized and without SFAE, and decreased with an increase in SFAE concentration. The storage modulus (G') and loss modulus (G") of all emulsions homogenized with SFAE were also lower than those of the control sample. The stability of all emulsions with SFAE did not show any significant change for 30 d at $5^{\circ}C$. However, the emulsions stored at $40^{\circ}C$ were unstable over the storage period. Therefore, the addition of SFAE enhanced the stability of dairy cream emulsions during storage at refrigeration temperature ($5^{\circ}C$).

Influence of Salt Concentrations on the Stabilities and Properties of Sodium Caseinate Stabilized Oil-in-Water Emulsions

  • Surh, Jeong-Hee;McClements, David Julian
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The influence of salt concentration on the stability of sodium caseinate (CAS)-stabilized emulsions (20 wt% corn oil, 3.2 wt% CAS, 5 mM imidazole/acetate buffer, pH 7) was examined. In the absence of salt, laser diffraction measurements and optical microscopy measurements indicated there were some large oil droplets ($d>10\;{\mu}m$) in the emulsions stabilized by 0.8 to 3.2 wt% of CAS. The droplet aggregation (mostly droplet coalescence) observed in the emulsions containing ${\leq}2.8\;wt%$ CAS tended to decrease as the CAS concentration increased, however, after which concentration (at 3.2 wt% CAS) depletion flocculation occurred. The addition of $CaCl_2$ (5-20 mM) into the emulsions stabilized by 3.2 wt% CAS prevented the depletion flocculation although there was a small fraction of relatively large individual droplets in the emulsions, which was attributed to electrostatic screening effect and bridging effect of calcium ion. This study has shown that calcium ion that has been reputed to promote droplet aggregation could improve emulsion stability against droplet aggregation in CAS-stabilized emulsions.

Preparation of Emulsion from Biodegradable Polymer (I) - Preparation of PLA and PBS Emulsions - (생분해성 고분자를 이용한 발수 에멀션의 제조 (I) - PLA 및 PBS 에멀션의 제조 -)

  • Lee, Min-Hyung;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.28-35
    • /
    • 2012
  • Water-in-oil emulsion (W/O) and oil-in-water emulsion (O/W) types biodegradable polymer emulsions prepared to PLA and PBS. The optimal mixing ratio of polymer : solvent : OA : TEA : water was found be 10 : 40 : 4 : 6 : 30(g) when preparing emulsions. Biodegradability was most retained after preparation of polymer emulsions. Particle size of PLA and PBS emulsions were 2-3 ${\mu}m$ and 3-4 ${\mu}m$, respectively. Molecular weight of PLA and PBS emulsions were 108,000 and 92,000, respectively. And molecular weight of PLA and PBS emulsions became slightly lower than those of pellets.

Cosmetic Emulsions: Stabilization by Particles (화장품 에멀젼: 입자에 의한 안정화)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • The preparation and properties of emulsions stabilized by the adsorption of solid particles at the oil-water interface are reviewed. Comparison is made with the behaviour of surfactant-stabilized emulsions. Many of the properties of Pickering emulsions are attributed to the large free energy of adsorption for particles. The main differences is due to the irreversible adsorption of particles to the interface. Phase inversion from w/o (water-in-oil) to o/w (oil-in-water) can be brought by increasing the volume fraction of water. Hydrophilic particles tend to form o/w emulsion whereas hydrophobic particles form w/o emulsion. The contact angle at the oil-water interface is main parameter to decide the emulsion type. The aspects of stability of Pickering emulsions are in contrast to general emulsions in some points. The possibility using Pickering emulsions for cosmetics is also proposed.

Liquid Crystal Emulsions Containing High Content Ceramides for Improved Skin Barrier Functions

  • Lee, Jun Bae;Noh, Minjoo;Kim, Su Ji;Jang, Jihui
    • Korea Journal of Cosmetic Science
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • In this work, we fabricated liquid crystal (LC) emulsions with fatty alcohol in order to stabilize high content ceramide in cosmetic formulation. We investigated the role of fatty alcohol and surfactant in the formation of higher order structure. As a result, we found that they play a crucial role to form higher order structure. SAXS study shows that ceramide can be incorporated up to 3% in cosmetic formulation with higher order structure and its stability was maintained up to 12 weeks at room temperature. According to WAXS study, the higher order structure can suppress the re-crystallization of ceramide in cosmetic formulation. Finally, we performed in vivo skin barrier recovery test for the damaged skin. LC emulsions with ceramide and O/W emulsions show significant effect in skin barrier recovery at D 1, D 2 and D 6 compared to the untreated condition. While only LC emulsions show significant skin recovery effect at D 14. We expect that LC emulsions are the promising skin carrier to stabilize ceramide and LC emulsions with ceramide can improve the skin barrier function.

Retracted article: Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

  • Park, Sung Hee;Min, Sang-Gi;Jo, Yeon-Ji;Chun, Ji-Yeon
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.630-637
    • /
    • 2015
  • In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Orthokinetic Stability of $\beta$-Lactoglubulin-Stabilized Emulsions : Effects of Protein Heat Treatment and Surfactant Addition

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of protein heat treatment and surfactant additionoo the orthokindetic stability of $\beta$-lactoglobulin-stabilized emulsions have been investigated under turbulent flow conditions. In studies on protein-stabilized emulsions, samples which had been subjected to heat treatment(i.e. the protein solution orthe emulsion) have been found to be more prone to orthokinetic coalescene than the untreated ones. The emulsions stabilized with protein heated above the denaturation temperature(i.e. 7$0^{\circ}C$) showed the bigger initial average droplet size, which resulted in an increased orthokinetic coalescenece rate. The storage of the protein-stabilized emulsion at high temperature prior to the shearing experiment also made the emulsion less stable in the shear field. Interestingly. the addition of DATEM has been found to produce a substantial increase in orthokinetic stability of the heat-denatured protein-stabilized emulsion system, although Tween 20 is the opposite case.

  • PDF

Effect of Glutamic Acid and Monosodium Glutamate on Oxidative Stability of Riboflavin Photosensitized Oil-in-Water Emulsion

  • Ji-Yun Bae;Mi-Ja Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • Effects of glutamic acid (Glu) and monosodium glutamate (MSG) on oxidative stability of oil-in-water (O/W) emulsions with different emulsifier charges during riboflavin (RF) photosensitization were evaluated by analyzing headspace oxygen content and conjugated dienes. Cetyltrimethylammonium bromide (CTAB), Tween 20, and sodium dodecyl sulfate (SDS) were used as cationic, neutral, and anionic emulsifiers, respectively. Glu acted as an antioxidant in CTAB- and Tween-20-stabilized O/W emulsions during RF sensitization, whereas Glu acted as prooxidants in SDS-stabilized O/W emulsions in the dark. However, adding MSG did not have a constant impact on the degree of oxidation in O/W emulsions irrespective of the emulsifier charge. In RF-photosensitized O/W emulsions, the emulsifier charge had a greater influence on antioxidant properties of Glu than on those of MSG.

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.