• Title/Summary/Keyword: emulsions

Search Result 352, Processing Time 0.022 seconds

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

Influence of Droplet Size and Oil Viscosity on the Descending Velocity of Droplets Using Water Model With and Without Stirring (교반 유무에 따른 수모델을 사용한 액적의 하강 속도에 대한 액적 크기 및 오일 점도의 영향)

  • Hyeok-In Kwon;Alberto Conejo;Sung Yong Jung;Sun-Joong Kim
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Metal emulsions have been studied for several decades as a method of increasing the efficiency of the steelmaking process. This study was performed using a water model, observable at room temperature, to compensate for the disadvantages of the high-temperature experiment, the results of which are difficult to observe visually. As a substitute for metal-in-slag emulsions, experiments were conducted by dropping distilled water into silicone oil and comparing the results with the results of a calculation by momentum balance equations. The descending velocity of the water droplet decreased as the diameter of the droplet and viscosity of the fluid (silicon oil) increased. To simulate the descending velocity of a water droplet in silicon oil under stirring conditions, the flow rate of the fluid (silicon oil) was measured by particle image velocimetry (PIV) methods. The calculation of the descending velocity of the water droplet was in good agreement with the measured values, with and without stirring a viscous silicone oil.

Stabilization and Release Behavior of W1/O/W2-Type Multiple Emulsions Using Various Block Copolymer Emulsifier and Stabilizer (다양한 Block Copolymer를 유화제 및 안정화제로 사용한 W1/O/W2-Type 다중에멀젼의 방출거동 및 안정성)

  • Haw, Jung-Rim;Kim, Cheol-Hun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-567
    • /
    • 1997
  • A new approach to obtain stable $W_1/O/W_2$ multiple emulsions has been studied ; The basis of the interfacial interaction between a PCL-PEO-PCL triblock copolymer and a lipophilic emulsifier in the dispersed oil phase was examined. $W_1/O/W_2$ multiple emulsions were prepared by the two-step method. Arlacel P-l35 was used as a liphophilic emulsifier and Synperonic PE/F 127 as a hydrophilic one. Eutanol-G was used as an oil phase. NaCl was encapsulated within the multiple emulsion droplets as the internal marker and its release rate studies were carried out. The suability of the multiple emulsions have been assessed by measuring Separation Ratios(%) and microscopic observations. The release of NaCl was significantly reduced in $W_1/O/W_2$ multiple emulsions containing PCL-PEO-PCL triblock copolymer(2k-4k-2k or 6k-4k-6k) in the oil phase. It may be concluded that the copolymer and the emulsifier form effective interfacial complex to enhance stability and to control the release rate. The effective diffusion coefficients of the NaCl were estimated as $2.64{\times}10^{-15}s$and $3.23{\times}10^{-16}gcm^2/s$ for the $W_1/O/W_2$ multiple emulsion containing 1.2 wt % of PCL-PEO-PCL triblock copolymers with compositions of 2k-4k-2k and 6k-4k-2k, respectively. The rate of release decreased with the increase of the initial concentration of NaCl. The results were examined in view of Higuchi mechanism. A kinetic model which is similar to the model for release of dispersed drugs from a polymeric matrix was found to be suitable for the release of NaCl from $W_1/O/W_2$ multiple emulsions.

  • PDF

Changes in the Stability Properties of Methylcellulose Emulsions as Affected by Competitive Adsorption Between Methylcellulose and Tween 20 (메칠셀룰로오스/Tween 20 경쟁 흡착이 메칠셀룰로오스 유화액의 안정도 특성에 미치는 영향)

  • Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1278-1286
    • /
    • 2008
  • The effect of Tween 20 addition on changes in the stability of methylcellulose (MC) emulsions (1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris buffer, pH 7) was investigated by creaming stability and orthokinetic stability measurements. In the case of MC emulsions containing varying amounts of oil (1$\sim$30 wt%) and no Tween 20 added, creaming stability, judged by mean migration velocity of fat globules ($V_m$), was found to depend on droplet size: the larger the droplet size, the worse the stability [$V_m$: 0.326 $\mu$m $min^{-1}$ ($d_{32}$: 0.32 $\mu$m) ${\rightarrow}V_m$: 0.551 $\mu$m $min^{-1}$ ($d_{32}$: 0.53 $\mu$m)]. With Tween 20, creaming stability was found to be worse than the one without Tween 20, except for MC emulsion containing 0.2 wt% Tween 20. In addition, cream stability was the lowest with the lowest concentration of Tween 20 and a tendency to recover with increasing Tween 20 concentration [$V_m$: 0.598 $\mu$m $min^{-1}$ (0.01 wt%)${\rightarrow}V_m$: 0.389 $\mu$m $min^{-1}$ (0.2 wt%)] was found. From viscosity measurement for aqueous bulk phase of MC emulsions, such a change in the creaming stability was found to coincide well with the results of viscosity measurement. Therefore, it was reasonable to say that creaming stability of MC emulsions containing Tween 20 depended on MC concentration in aqueous bulk phase, which was in turn varied by competitive adsorption between MC and Tween 20 at the oil droplet surface. In case of orthokinetic stability, judged by destabilization time ($t_d$), it was found that the addition of Tween 20 resulted in lowered stability with more pronounce tendency at higher concentrations [$t_d$: 160 min (0.03 wt%)${\rightarrow}t_d$: 100 min (0.2 wt%)]. Moreover, combined with previous results, the orthokinetic stability of MC emulsions containing Tween 20 was found to be exponentially proportional to MC load. In conclusion, competitive adsorption between MC and Tween 20 may affect the stability properties of MC emulsion to varying extents, depending on the concentration of Tween 20.

Emulsifying Properties of Gelatinized Octenyl Succinic Anhydride Modified starch from Barley (호화 옥테닐 호박산 전분의 유화 특성)

  • Kim, San-Seong;Kim, Sun-Hyung;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.174-188
    • /
    • 2019
  • The present study was carried out to investigate the emulsifying properties of heat-treated octenyl succinic anhydride(OSA) starch and the interfacial structure at oil droplet surface in emulsions stabilized by heat-treated OSA starch. First, the aqueous suspensions of OSA starch were heated at $80^{\circ}C$ for 30 min. Oil-in-water emulsions were then prepared with the heat-treated OSA starch suspension as sole emulsifier and their physicochemical properties such as fat globule size, surface load, zeta-potential, dispersion stability, confocal laser scanning microscopic image(CLSM) were determined. It was found that fat globule size decreased as the concentration of OSA starch in emulsions increased, showing a lower limit value ($d_{32}:0.31{\mu}m$) at ${\geq}0.2wt%$. Surface load increased steadily with increasing OSA starch concentration in emulsions, possibly forming multiple layers. In addition, fat globule sizes were also influenced by pH: they were increased in acidic conditions and these results were interpreted in view of the change in zeta potentials. The dispersion stability by Turbiscan showed that it was more unstable in emulsions at acidic condition. Heat-treated OSA starch found to adsorb at the oil droplet surface as some forms of membrane (not starch granules), which might be indicative of stabilizing mechanism of OSA starch emulsions to be steric forces.

Emulsifying Properties of Concentrated Red Ginseng Extract: Influence of Concentration, pH, NaCl (홍삼농축액 함유 유화액의 유화특성에 관한연구)

  • You, Kawn-Mo;Jang, Hyeon-Ho;Lee, Eui-Seok;Lee, Ki-Teak;Hong, Soon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.504-514
    • /
    • 2017
  • This study was carried out to investigate the emulsifying properties of concentrated red ginseng extract (CRGE). First, we determined the interfacial tension of CRGE at the oil-water interface. Second, oil-in-water emulsions were prepared with CRGE and then their physicochemical properties such as fat globule size, zeta-potential, dispersion stability, and microscopic characteristics were determined. It was found that interfacial tension gradually decreased with increasing CRGE concentration, indicative of some surface activity. In emulsions, fat globule size was decreased as CRGE concentration increased, showing a critical value ($d_{43}$$0.39{\mu}m$) at ${\geq}3.5wt%$ of CRGE. In addition, pH and NaCl also influenced on fat globule sizes; they were increased in acidic conditions ($pH{\leq}3$) or in higher NaCl concentration (${\geq}0.4M$) and these results were interpreted in view of the change in zeta potentials. The dispersion stability by separation analyzer ($LUMiFuge^{(R)}$) showed that it was more stable in emulsions with higher CRGE concentration (i.e., ${\geq}3.5wt%$). In conclusion, CRGE was surface-active and it could be used as an emulsifier in preparation of food emulsions.

Synergistic Interaction in W/O and W/S Emulsions Stabilized by a Mixture of Powders and Surfactant (분체와 유화제의 상호 관계성에 기인한 저점도 W/O 및 W/S 에멀젼의 안정성 연구)

  • In, So Hyun;Cho, Hwanil;Kang, Nae Gyu;Han, Jong Sup;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Water-in-oil emulsions including water-in-ester oil and water-in-silicone oil (W/O+S) have various advantages such as blocking moisture evaporation and forming air permeable membrane. However, their applications have been limited due to the poor stability under low viscosity condition. In this study, we investigated the effect of synergistic interaction between nonionic surfactant, micro-size particles and cationic surfactant on the stability of W/O+S formulation. The stability of W/O+S emulsions was changed as a function of cationic surfactant concentration where it increased at lower concentration and then started to decrease above a critical point. Finally, emulsion phase inversion occurred at a high concentration. The results suggest that W/O+S emulsions of low viscosity ranging from 2000 to 5000 cps can be stabilized under the conditions where a nonionic surfactant, micro-size particles and a cationic surfactant are used in the range of 1.0 ~ 4.0 wt%, 2.5 wt% and 0.1 ~ 0.5 wt%, respectively.

Emulsion Stability of Cosmetic Facial Cream O/W Emulsions Prepared by Brij Type Non-ionic Emulsifie (Brij계 비이온성 혼합유화제를 이용하여 제조된 화장용크림 O/W 유화액의 유화안정성)

  • Park, Bo Ra;Lee, Seung Min;Choi, Junho;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.440-445
    • /
    • 2018
  • In this study, the stability of O/W cosmetic facial cream emulsions according to HLB values was evaluated by mixing nonionic surfactants, such as Brij 78&72 and Brij 98&92. Brij 78&72 (steareth-20&steareth-2, EMS-01), saturated fatty acid, and Brij 98&92 (oleth-20&oleth-2, EMS-02), unsaturated fatty acid, were used as mixed surfactants. The stability of the O/W emulsion was evaluated by using the emulsion viscosity, particle size, particle size distribution, and zeta-potential. The viscosity of the emulsion increased with the increase of time for EMS-01 while that of EMS-02 decreased with the increase of HLB value. The particle size of both EMS-01 and EMS-02 increased with time. The emulsifier with a HLB value of 10.8, which is the most similar to the required HLB value of mineral oil, 10.5, had the smallest particle size and highest density and also showed the highest emulsion stability. The zeta-potential of both emulsions tended to increase with the HLB value. No significant changes were observed in emulsions of the HLB value of 10.8 or more. The saturated fatty acid system, EMS-01, exhibited a higher zeta-potential value than that of the unsaturated fatty acid EMS-02 and also was superior in the stability.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.

Evaluation of Emulsion Stability for Cosmetic Facial Cream Emulsion Using Mixed Nonionic Emulsifier (비이온성 혼합유화제를 이용한 화장용 크림 유화액의 유화안정성 평가)

  • Hong, In Kwon;Kim, Su In;Park, Bo Ra;Choi, Junho;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.527-531
    • /
    • 2016
  • Emulsification is a fundamental process of cosmetics manufacture which produces stabilized emulsion by dispersing the liquid from the one side to the other by adding an emulsifier in an immiscible liquid. Various types of emulsifiers can produce various cosmetics. In this study, we evaluated the stability of emulsifier by measuring variations in the viscosity, particle size and particle size distribution. HLB values of nonionic emulsifiers which are used in this paper are 12.9, 12.9, 12.6 and 12.5 for EMU-01, EMU-02, EMU-03 and EMU-04, respectively. All types of emulsions showed an increase in the particle size and a decrease in the viscosity with the time. Also they showed a decrease in the particle size and an increase in the viscosity with respect to increasing the stirring speed. However, the stability of emulsions up to 56 days was secured by observing the non-separation of emulsions. In addition, the viscosity of the emulsions was measured in the order of EMU-01 > EMU-02 > EMU-03 > EMU-04 while the size of particles was measured in the order of $EMU-01{\approx}EMU-02$ > $EMU-03{\approx}EMU-04$. This indicates that our emulsion can be potentially used for preparing a cosmetic facial cream.