• Title/Summary/Keyword: emulsion stability

Search Result 565, Processing Time 0.029 seconds

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Stability and antioxidant effect of rapeseed extract in oil-in-water emulsion

  • Zhang, Hua;Shin, Jung-Ah;Hong, Soon Taek;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.249-257
    • /
    • 2016
  • In this study, rapeseed extracts were obtained by supercritical carbon dioxide fluid extraction of defatted rapeseed to evaluate the stability and antioxidant activity of an oil-in-water (O/W) emulsion system. The oil-in-water emulsions were prepared from stripped soybean oil with different concentrations (0.3, 0.4, 0.5, and 0.6%) of rapeseed extract as an emulsifier. Their emulsion stability was compared to that of emulsions prepared with the commercial emulsifier, Tween 20 (Polysorbate 20, 0.2%). After stripping the soybean oil, the total tocopherol content was reduced from 51.4 g/100 g to 1.1 g/100 g. Emulsion stability and oxidative stability of emulsions prepared with Tween 20 and rapeseed extract as emulsifiers were evaluated. For 30 days droplet sizes of emulsions containing rapeseed extract (0.4, 0.5, and 0.6%) were not significantly different (p > 0.05). Similar results were obtained for emulsion stability (ES) and Turbiscan analysis, suggesting that the addition of rapeseed extract increased emulsion stability. The addition of rapeseed extract at more than 0.4% resulted in an emulsion stability comparable to the addition of 0.2% Tween 20. The antioxidative ability of rapeseed extract increased with the amount added in the emulsion. Moreover, the addition of 0.6% rapeseed extract resulted in the lowest emulsion peroxide values (10.3 mEq/L) among all treatments. Therefore, according to the stability of its antioxidative and physical stability properties, rapeseed extract from super critical extraction could be successfully applied to the food and cosmetic industries.

Effect of protein and oil concentration on the emulsion stability of soy protein isolate (단백질과 기름농도가 분리대두단백질의 유화안정성에 미치는 영향)

  • Hwang, Jae-Kwan;Kim, Young-Sook;Pyun, Yu-Ryang
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.457-461
    • /
    • 1992
  • The emulsion stabilizing properties of soy protein isolate (SPI) were investigated in terms of the protein and oil concentration. Particularly, the dependence of emulsion stability on the oil particle size and viscosity of emulsion was studied in conjunction with the adsorption pattern of protein onto the water/oil interface during emulsification. The data showed that increasing protein concentration decreased the oil particle size and increased the emulsion viscosity, resulting in the enhanced emulsion stability. In contrast, increasing oil concentration increased both the oil praticle size and the emulsion viscosity, and thus emulsion stability varied depending on which factor predominated the overall emulsion system.

  • PDF

Preparation and Evaluation of Mutivitamin Emulsion (복합비타민 유제의 제조와 평가)

  • Lee, Moon-Seok;Cho, Hea-Young;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • Water-lipid soluble multivitamin formulations were widely used to reduce the disease and stress of animals as husbandry has made a remarkable progress in recent. But the efficiency of these formulations is far from satisfactory. So, this study was attempted to develop the physically and chemically stable and useful multivitamin o/w emulsion. Multivitamin o/w emulsion composed of water, soybean oil (10%, v/v), vitamin A, D, E, K, $B_2,\;B_6,\;B_{12}$ and panthenol. To make a stable o/w emulsion, the egg lecithin (2%, w/v) and glycerin (2.5%, w/v) were used for emulsifier and thickening agent, respectively. The oil in water emulsion system was manufactured by microfluidizer and the physicochemical stability of this emulsion was evaluated. The average particle size and interfacial tension were measured. From the result of interfacial tension tested, critical micelle concentration of the egg lecithin was 0.5% (w/v) and optimal concentration for the preparation of emulsion was 2% (w/v). The mean particle size was about $0.6\;{\mu}m$ which was suitable for injections. Short-term accelerated stability as physical stability study was tested by centrifuging and freeze-thawing the emulsion samples. The additions of vitamins resulted in the increment of particle size and reduction of physical stability of emulsion. But it is not an enormous problem for the stability of emulsion. Also, we have performed the long-period preservation stability test for the vitamins. All vitamins were analysed by HPLC. The result of storage under $4^{\circ}C$ and dark conditions demonstrated that all vitamins were maintained stable at least 16 weeks, except for vitamin $B_{12}$.

Development of Water Soluble Tocopherol Emulsion Using Surfactants (계면활성제를 이용한 수분산 Tocopherol 유화물의 개발)

  • Lee, Eun-Hyun;Chang, Kyu-Seob;Lee, Kyong-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1465-1471
    • /
    • 2008
  • This study was carried out to make water-soluble tocopherol emulsion which can be applicable directly in water. The molecular weight of tocopherol was 340 to 360 and tocopherol emulsion model was decided as O/O/W/W type. In correlation between stability of emulsion and surface tension, the stability in surface tension of emulsion was from 40 to 46 dyne/cm. In the case of lower than 40 dyne/cm of surface tension, the stability of the emulsion was lower. Lipophilic surfactants, especially for a polyglycerine polyricinoleate in 20%, 30% and 40% tocopherol emulsion, was the most effective in emulsion stability. A higher stability of the emulsion among hydrophilic surfactants in the tocopherol emulsion was obtained in the following order; polyglycerine monostearate> polyglycerine monooleate> polyoxyethylene (20) sorbitan monooleate$\geq$ polyoxyethylene (20) sorbitan monolaurate.

Evaluation of Glyceryl Monooleate(GMO) W/O Emulsion Stability by using Turbiscan®LAB (Turbiscan®을 이용한 Glyceryl Monooleate(GMO) 함유 W/O 유제의 안정성 평가)

  • Cho, Kyung-Jin;Cho, Won-Kyung;Lee, Jeon-Pyung;Kim, Min-Soo;Kim, Jeong-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The main object of this study was to prepare of w/o emulsion including glyceryl monooleate(GMO) and to evaluate its stability by using the recently developed $Turbiscan^{(R)}LAB$. GMO is the polar oily surfactant with the low HLB value, and it forms the gel phase of cubic structures after dissolves in aqueous media. Phosphate buffer solution (PBS) of pH 7.4 was prepared as the water phase and Marcol 52(mineral oil) was used as the oil phase in this study. GMO was used as the surfactant of W/O emulsion. W/O emulsion using GMO alone as a surfactant was very unstable. But the emulsion using both GMO and poloxamer 407 was more stable. The stability of W/O emulsions was evaluated after centrifuging the emulsions. But it was difficult with naked eye because an opaque and concentrated system like W/O emulsion was very turbid. So $Turbiscan^{(R)}LAB$ was used to detect the destabilization phenomena in non-diluted emulsion. As a result, the W/O emulsion using the proper amounts of GMO and poloxamer 407 was more stable among them using GMO of various amounts. But it seems that the other element for the stability of W/O emulsion including GMO was required. Furthermore, the $Turbiscan^{(R)}LAB$ was a very efficient analyzer for evaluating the physical stability of emulsion.

Effect of Emulsifiers and Stabilizers on the Emulsion Stability of Mayonnaise (유화 . 안정제 사용이 Mayonnaise의 유화안정성에 미치는 영향)

  • 이영엽
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.115-120
    • /
    • 1998
  • The effects of oil concentration and stabilizers and emulsifiers on the emulsion stability of mayonnaise were studied. The highest viscosity of mayonnaise and the least amount of oil separation were by the additon of soluble starch, but when it was added below 0.6%, the viscosity of a mayonnaise decreased sharply during storage at 3$0^{\circ}C$. The stability of mayonnaise was increased only when the soluble starch was added to mayonnaise above 0.9%. When xanthan gum was added at the concentration of 0.05~0.1%, the viscosity of mayonnaise was increased considerably and the emulsion stability was improve. But if it was added more than at 0.2% on the contrary, the emulsion stability was reduced and the texture of mayonnaise was changed. When both 0.1%-xanthan gum and 0.3%-soluble starch were added, the most stable mayonnaise was obtained.

  • PDF

Effect of oil particle size on dispersion stability in oil in water emulsion (Oil in Water 에멀전에서 오일 입자 크기가 분산 안정성에 미치는 영향)

  • Hwangbo, Sunae;Chu, Minchul;Moon, Changkwan
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.133-139
    • /
    • 2017
  • In this paper, we proposed an emulsification method without using an emulsifier and investigated the effects of particle size distribution in fluids on dispersion stability. Surfactant-free oil in water emulsion was prepared with 1 % (w/w) of olive oil by using high speed agitation, high pressure and ultrasonic dispersion methods. The particle size, microscopic observation, and dispersion stability of each sample were evaluated and dispersion stability according to various dispersion methods was compared. As a result, the emulsion dispersed by the ultrasonic dispersion method showed the smallest particle size and uniform distribution of $0.07{\sim} 0.3{\mu}m$ and was the most stable in a 7 days stability evaluation. In the above experiment, four olive oil emulsions having different particle sizes were prepared using ultrasonic dispersion technology that was capable of producing stable emulsions. The dispersion stability of each samples with oil droplet sizes of (A) 0.1 to $0.5{\mu}m$, (B) 0.3 to $4{\mu}m$, (C) 1 to $10.5{\mu}m$ and (D) 2 to $120{\mu}m$, was observed for 7 days, and the relationship between the stability and performance was studied. Emulsion (A) with particle size less than $0.5{\mu}m$ displayed the dispersion stability showing below 5 % change in a 7 days stability evaluation. In the case of (B), (C), and (D) that had larger particle than $0.5{\mu}m$, the changes of dispersion stability were 10 %, 13 % and 35 % respectively. From these results, it was proved that dispersion stability of emulsion with uniform particle size of $0.5{\mu}m$ or less was confirmed to be very stable.

Solubility, Emulsion Capacity, and Emulsion Stability of Protein Recovered from Red Crab Processing Water (홍게 가공회수 단백질의 용해도, 유화력 및 안정성)

  • Kim, Yong-Jin;Sin, Tae-Seon;O, Hun-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1996
  • The functional properties of protein recovered from red crab (Chitinonecetes opiiie) processing in water (RCP) were examined and compared with those of soybean protein isolate at pH 2~10 in water and NaCl solu5ion. The solubilities of RCP and SPI were miniumu at pH 4, the isoelectric point and increased significantly at lower or higher than pH 4. Solubilities in NaCl solution for both proteins decreased with incr NaCl concentration increase at all pH ranges. Emulsion capacity for both proteins was also minimum at pH 4 and increased as protein concentration increased from 2 to 6%. Emulsion capacity of RCP was higher than these of SPI at pH 6∼10 and all protein concentrations. Emulsion stability showed a similar trend to that of emulsion capacity. RCP had higher oft absorption capacity and lower water absorption capacity than SPI.

  • PDF

Preparation and Evaluation of Vitamine A palmitate Dry Emulsion (비타민 A 팔미틴산 건조 유제의 제조 및 평가)

  • Lee, Jong-Pyo;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Vitamin A palmitate, an oily drug which has low chemical stability and is poorly absorbed in the intestine, was formulated into a novel powdered dosage form. This is designated as a redispersible dry emulsion by freeze-drying technique. Before preparing a dry emulsion, vitamin A palmitate oil in solid in water (O/S/W) emulsion with soybean oil and coconut oil using Aerosil 200 as an emulsion stabilizer and polyoxyethylene-polyoxypropylene-blockcopolymer (Pluronic F68) as a surfactant was prepared. The resultants of the stability tests indicated that vitamin A palmitate O/S/W emulsion was improved on increasing the oil content of the formulation. The resultant dry emulsion particles have a good stabilities and free flow properties and readily released the oily droplets to form stable emulsions on rehydration. The drug releasing property from the resultant dry emulsion particles was dependent on factors such as amount of oily carrier(soybean oil) and surfactant(Pluronic F68) formulated. Above 80% of vitamin A palmitate content was released from the dry emulsion for 1 hour. It was deduced that vitamin A palmitate dry emulsion was definitely suitable for oral administration, since small droplets of vitamine A palmitate from the dry emulsion may alter the drug absorption profile resulting in bioavailability enhancement.

  • PDF