• Title/Summary/Keyword: emulsifying property

Search Result 35, Processing Time 0.057 seconds

Synthesis of Some Phosphated Fatty acyl Derivatives of Mannitol and Their Evaluation

  • Jain, Sanjay;Tripathi, Meena;R.K.Uppadhyay;D.V.Kohli
    • Archives of Pharmacal Research
    • /
    • v.12 no.4
    • /
    • pp.233-235
    • /
    • 1989
  • Sodium salts of phosphated capric and myristic acyl derivatives of mannitol were prepared and evaluated for surface activity, foam characteristics and emulsifying properties. Triacyl mannitols of cappric and myristic acid have better emulsifying property than the corresponding di and monocompounds.

  • PDF

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

Influence of sugar alcohol and enzyme treatment on the quality characteristics of soy ice cream (당알콜과 효소의 종류가 대두아이스크림의 품질특성에 미치는 영향)

  • 구선희;이숙영
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2000
  • The effects of bromelain and $\alpha$-chymotrypsin treatments on the functional properties(foaming capacity, foaming stability, emulsifying capacity, and emulsifying stability) of soy protein isolate(SPI) and the addition of various sweeteners(sucrose, sorbitol, xylitol) on the quality attributes(viscosity, overrun ratio, melt-down property, and sensory characteristic) of soy ice cream were studied. SPI was more effectively hydrolyzed with $\alpha$-chymotrypsin than bromelain, resulting in a better foaming and emulsifying capacity. Adding xylitol could significantly improve the viscosity, overrun and melt-down property of soy ice creams while the effect was the lowest in the sucrose addition. Bromelain treatment caused a lower apparent viscosity of SPI suspension compared with $\alpha$-chymotrypsin treatment and untreated. The overrun ratios of the soy ice cream prepared with bromelain and $\alpha$-chymotrypsin treated SPI were 18.9∼25.9% and 24.9∼40.3%, respectively as a result of freezing with agitation for 20 min in an ice cream maker. Comparatively, untreated SPI could bring only 15.8∼21.4% overrun ratios after operating for 15 min. The bromelain treatment caused high melt-down tendency of the product while soy ice cream with untreated SPI showed an opposite trend. In sensory characteristics, no significant differences in the strength of beany flavor were noted among the samples. Sweetness, bitter taste, icy feel, and mouthfeel of the product were greatly affected by the enzyme-treatment of SPI. Soy ice cream added with xylitol after $\alpha$-chymotrypsin treatment was the most acceptable among all samples.

  • PDF

An Experimental Study on the Property and Stability of W/O Emulsion by Various Structures of Emulsifier (유화제의 구조에 따른 W/O 에멀젼의 특성 및 안정도에 관한 연구)

  • Kim, Woon-Ha;Lee, Kwang-Sik;Lee, Kun-Kook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.2
    • /
    • pp.119-131
    • /
    • 2012
  • The W/O emulsion is widely used for cosmetics because of its water-proofing benefit and long-lasting moisturizing effect. However, because of low stability of the W/O emulsion, it is very important to control the concentration of electrolyte and emulsifying agent, and ratio of water phase. Among these factors, we focused on the effects of different structures of emulsifying agents on the change of stability. Emulsifying agents were sorted into polyglyceryl ester, silicone and sugar series. We also examined the emulsifyingability of emulsifier by changing the ratio of normal and silicon oil in the oil phase. Through these experimental results, we figured out the property of w/o emulsion depending on the types of emulsifiers, and observed the stability of emulsion considering the change of particles and viscosity over time.

Improvement on the Functional Properties of Gelatin Prepared from the Yellowfin Sole Skin by Precipitation with Ethanol (알코올처리에 의한 각시가자미껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 1994
  • With a view to utilizing effectively fish skin wastes from marine manufactory, a gelatin solution extracted from yellowfin sole skin was fractionated by precipitation with ethanol, and then the functional and physico-chemical properties for the fractionated gelatin were determined. Ethanol was added up to 50% of ethanol content to a gelatin solution extracted from yellowfin sole skin, then the mixture was left to stand at $0^{\circ}C$ for 12 hours. Finally, the precipitates were dried by hot-air ($40^{\circ}C$). The gel strength and melting point of a 10% gel of gelatin prepared from yellowfin sole skin by precipitation with ethanol has 322.4g and $23.3^{\circ}C$, respectively. The physico-chemical properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol treatment. Besides, the functional properties of the ethanol treated gelatin were lower in solubility and higher in water holding capacity, oil binding capacity, emulsifying activity, emulsifying stability, foam expansion and foam stability than those of pork skin gelatin sold on market as well as gelatin prepared without ethanol treatment. It may be concluded, from these results, that the fish skin gelatin prepared by precipitation with ethanol can be effectively utilized as a human food by improving the functional properties.

  • PDF

Improvement of Functional Properties of Extracts from Hydrothermal Cooked Fish Meat by Plastein Reaction (Plastein 반응에 의한 고온조리 어육추출물의 기능성 개선)

  • 이근태;박성민;이상호;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.93-101
    • /
    • 1998
  • In order to improve the functional properties of several fish meat extracts as an alternate protein source, theri basic plastein reactions were evaluated. The UV absorption at 270 and 290 nm indicated that plasteins had higher amount of hydrophobic peptide or amino acid than the fish meat extracts. The water solubilities of the extracts were reduced at acidic pH. Values for the emulsifying capacity of the extracts and plasteins were over 30% although the latter showed the higher ones than the former. The osmolalities of the extracts at 1.0% concentration were 39(loach), 33(bastard halibut), 30(jacopever) and 24(crucan carp) milliosmole. Generally the slightly higher osmolalities were noted in the plasteins to be compared with the extracts. Both the extracts and plasteins exhibited a higher antioxidative effect than tocopherol. The hydrophobic amino acid which had been introduced at plastein reaction attributed the stronger antionxidative effect of its product than the extracts.

  • PDF

Improvement in functional properties of conger eel skin gelatin by succinylation (Succinylation에 의한 붕장어껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.282-286
    • /
    • 1996
  • To effectively utilize fish skin gelatin as a material for quality improvement in surimi gel from fish with a red muscle, conger eel skin gelatin was modified with succinic anhydride, and funtional properties such as emulsifying activity and emulsifying stability were determined. The degree of chemical modification incresed up to 0.3 g of succinic anhydride/g of gelatin, above this adding ratio a nearly constant value was reached. The maximum amount of modification was about 90%. The emulsifying activity and emulsifying stability of gelatin gradually increased up to 89.8% of succinylation extent, little changed above of succinylation extent. The other functional properties as solubility, water holding capacity, foam expansion and foam stability were improved following succinylation with 0.3 g of succinic anhydride/g of gelatin. Amino acid composition of succinylated gelatin was similar to that of unmodified gelatin. Heavy metal contents such as cadmium, lead, copper and zinc of succinylated gelatin were lower than those of unmodified gelatin.

  • PDF

Preparation and properties of gelatin from conger eel skin (붕장어껍질로부터 젤라틴의 제조 및 그 특성)

  • Ihm, Chi-Won;Kim, Poong-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.274-281
    • /
    • 1996
  • To prepare edible skin gelatin of conger eel such as material fur quality improvement of surimi gel, the defatted skin was limed with 1% calcium hydroxide at $5^{\circ}C$ for 2 days, washed thoroughly with tap water, extracted with 8 volumes of distilled water to dehydrated skin for 2 hours at $50^{\circ}C$. The gelatin extract was centrifuged, filtered and then passed through anion(Amberlite 200C) and cation (Amberlite IR 900) resins. The purified gelatin solution was evaporated and dried by hot-air blast$(40^{\circ}C)$. The gelatin prepared by above condition had the highest quality as revealed by physical property values i.e. 240.5 g in gel strength, $28.0^{\circ}C$ in melting point and $28.0^{\circ}C$ in gelling point. Funtional property values were 56.8% in solubility, 1.8 ml/g in oil binding capacity, 55.0% in emulsifying capacity and 48.5% in emulsifying stability. jelly strength and senso교 evaluation of surimi gel from fish with red muscle were not improved by addition of emulsifying curd from conger eel skin gelatin as emulsifier. Therefore, the conger eel skin gelatin requires a suitable modification of functional group and improvement of processing operation to utilize as a material for quality Improvement of surimi gel.

  • PDF

Effects of External Conditions on the Emulsifying Property of Proteins (단백질의 유화작용(乳化作用)에 미치는 외적(外的) 조건(條件)에 관한 연구)

  • Lee, Cherl-Ho;Kim, Hak-Ryang;Yang, Han-Chul;Lee, Myung-Won;Bae, Chong-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 1982
  • The effects of measurement conditions on the emulsifying capacity(EC) and emulsion stability(ES) of proteins were studied in order to develop laboratory standard methods for the evaluation of emulsifying properties. The EC of proteins decreased with the increments of protein concentration and mixing rate. It increased with the increasing oil addition rate up to 0.8 ml/sec, but did not change at $0.8{\sim}1.2\;ml/sec$. The addition of sodiumchloride enhanced EC of proteins, attaining to the highest EC at 0.3M NaCl for Pro-Fam and 0.1M NaCl for Na-caseinate. The ES of Pro-Fam was higher than that of caseinate. The ES was increased by the increments of protein concentration, oil addition volume, mixing rate and mixing time. The EC and ES showed a close relation to the NSI of proteins, reaching to the lowest values of EC and ES at the isoelectric regions of proteins. The laboratory methods for measurements of emulsifying properties of proteins were established. The emulsifying properties of a laboratory-made soybean protein isolate were compared to those of commercial products by using the methods.

  • PDF

Emulsifying Property of Carboxymethylchitin

  • Byun, Hee-Guk;Park, Pyo-Jam;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.237-238
    • /
    • 2001
  • Chitin is the second most abundant natural polymer after cellulose. It is mainly extracted from crustaceous shells and cell walls of fungi, insects and yeast. Chitin is known to be insoluble in most common solvents except for strong acids or N,N-dimethylacetamid because of its rigid crystalline structure through intra- and intermolecular hydrogen bonds. Therefore, different derivatives have been prepared based on chemical and enzymic modification of chitin. (omitted)

  • PDF