• 제목/요약/키워드: empirical Bayes credibility

검색결과 3건 처리시간 0.017초

An Estimation of Loss Ratio Based on Empirical Bayes Credibility

  • Lee, Kang Sup;Lee, Hee Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.381-388
    • /
    • 2002
  • It has been pointed out that the classical credibility model used in Korea since the beginning of 1990's lacks in objectiveness. Recently, in order to improve objectiveness, the empirical Bayes credibility model utilizing general exposure units like the number of claims and premium has been employed, but that model itself is not quite applicable in the country like Korea whose annual and classified empirical data are not well accumulated and even varied severely. In this article, we propose a new and better model, Based on the new model, we estimate both credibility and loss ratio of each class for fire insurance plans by Korean insurance companies. As a conclusion, we empirically make sure analysis that the number of claims is a more reasonable exposure unit than premium.

An Empiricla Bayes Estimation of Multivariate nNormal Mean Vector

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제15권2호
    • /
    • pp.97-106
    • /
    • 1986
  • Assume that $X_1, X_2, \cdots, X_N$ are iid p-dimensional normal random vectors ($p \geq 3$) with unknown covariance matrix. The problem of estimating multivariate normal mean vector in an empirical Bayes situation is considered. Empirical Bayes estimators, obtained by Bayes treatmetn of the covariance matrix, are presented. It is shown that the estimators are minimax, each of which domainates teh maximum likelihood estimator (MLE), when the loss is nonsingular quadratic loss. We also derive approximate credibility region for the mean vector that takes advantage of the fact that the MLE is not the best estimator.

  • PDF

자동차보험 신뢰도 적용에 대한 베이지안 추론 방식 연구 (A study of Bayesian inference on auto insurance credibility application)

  • 김명준;김영화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.689-699
    • /
    • 2013
  • 본 연구는 가격 경쟁으로 인하여 최근 들어 요율 세분화가 심화되고 있는 자동차보험 시장에서, 부분 신뢰도의 적용 대상에 대한 경험적 사전분포 (empirical prior distribution) 함수 또는 무정보적 사전분포 (noninformative prior distribution) 정보의 가정을 통한 신뢰도 산출 방식에 대하여 살펴보았다. 요율 세분화의 확대로 가격 산출 단위의 수가 증가될 경우, 부분 신뢰도의 적용 대상은 점차 증가되게 될 것으로 판단되기 때문에, 기존에 제시된 신뢰도 적용 방식을 베이지안 프레임에서 적용, 추론함으로써 보다 다양하고 정교한 방식으로 그 활용 범위를 넓히고자 한다. 즉, 경험적으로 사용되는 사전 분포함수 또는 무정보적 사전 정보를 통하여 적절한 사후분포 (posterior distribution)함수를 도출하고 오차를 최소화하는 베이즈 통계량을 적용한 신뢰도를 추정하여 적용함으로써, 위험도 예측에 있어 기존에 제시된 방법과 비교하여 그 효용성을 입증하고자 한다. 현재 가장 많이 활용되는 제곱근 법칙 (square root rule)의 신뢰도 추정 방식에 베이지안 추론에서 도출된 통계량을 반영한 결과를 분석하여 실질적인 위험도에 수렴하는 수준을 비교하게 된다. 이는 이론적으로 위험도 예측에서 오차를 줄이는 방식에 대한 대안 제시와 더불어 신뢰도 적용 방식에 대한 추가적인 활용 대안을 보험업계에 제시함으로써 요율 세분화로 인한 부분 신뢰도 적용방식에 대한 그 이해와 활용의 폭을 넓히고자 한다.