Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.
With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.
Kim, Ki-Il;Yoon, Jin-Hong;Park, Pyoung-Sun;Kim, Mi-Jin
한국HCI학회:학술대회논문집
/
2008.02b
/
pp.411-416
/
2008
The development of games has brought about the birth of game characters that are visually very realistic. At present, one sees much enthusiasm for giving the characters emotions through such devices as avatars and emoticons. However, in a freely changing environment of games, the devices merely allow for the expression of the value derived from a first input rather than creating expressions of emotion that actively respond to their surroundings. As such, there are as of yet no displays of deep emotions among game characters. In light of this, the present article proposes the 'CROSS(Character Reaction on Specific Situation) Model AE Engine' for game characters in order to develop characters that will actively express action and emotion within the environment of the changing face of games. This is accomplished by classifying the emotional components applicable to game characters based on the OCC model, which is one of the most well known cognitive psychological models. Then, the situation of game playing analysis of the commercialized RPG game is systematized by ontology.
Various studies on sentiment classification of documents have been performed. Recently, they have been applied to twitter sentiment classification. However, they did not show good performances because they did not consider the characteristics of tweets such as tweet structure, emoticons, spelling errors, and newly-coined words. In this paper, we perform experiments on various input features (emoticon polarity, retweet polarity, author polarity, and replacement words) which affect twitter sentiment classification model based on machine-learning techniques. In the experiments with a sentiment classification model based on a support vector machine, we found that the emoticon polarity features and the author polarity features can contribute to improve the performance of a twitter sentiment classification model. Then, we found that the retweet polarity features and the replacement words features do not affect the performance of a twitter sentiment classification model contrary to our expectations.
Journal of Korea Society of Industrial Information Systems
/
v.21
no.3
/
pp.35-46
/
2016
Social network services (SNS) that help to build relationship network and share a particular interest or activity freely according to their interests by posting comments, photos, videos,${\ldots}$ on online communities such as blogs have adopted and developed widely as a social phenomenon. Several researches have been done to explore the pattern and valuable information in social networks data via text mining such as opinion mining and semantic analysis. For improving the efficiency of text mining, keyword-based approach have been applied but most of researchers argued the limitations of the rules of Korean orthography. This research aims to construct a database of non-standard Korean words which are difficulty in data mining such abbreviations, slangs, strange expressions, emoticons in order to improve the limitations in keyword-based text mining techniques. Based on the study of subjective opinions about specific topics on blogs, this research extracted non-standard words that were found useful in text mining process.
Background: Dental anxiety in children is a major barrier in patient management. If dental anxiety in pediatric patients is assessed during the first visit, it will not only aid in management but also help to identify patients who are in need of special care to deal with their fear. Nowadays, children and adults are highly interested in multimedia and are closely associated with them. Children usually prefer motion pictures on electronic devices than still cartoons on paper. Therefore, this study was conducted to evaluate a newly designed scale, the animated emoji scale (AES), which uses motion emoticons/animojis to assess dental anxiety in children during their first dental visit, and compare it with the Venham picture test (VPT) and facial image scale (FIS). Methods: The study included 102 healthy children aged 4-14 years, whose dental anxiety was measured using AES, VPT, and FIS during their first dental visit, and their scale preference was recorded. Results: The mean anxiety scores measured using AES, FIS, and VPT, represented as $mean{\pm}SD$, were $1.78{\pm}1.19$, $1.93{\pm}1.23$, and $1.51{\pm}1.84$, respectively. There was significant difference in the mean anxiety scores between the three scales (Friedman test, P < 0.001). The Pearson's correlation test showed a very strong correlation (0.73) between AES and VPT, and a strong correlation between AES and FIS (0.88), and FIS and VPT (0.69), indicating good validity of AES. Maximum number of children (74.5%) preferred AES. Conclusion: The findings of this study suggest that the AES is a novel and child-friendly tool for assessing dental anxiety in children.
The users of a chatbot messenger can be better engaged in the conversation if they feel intimacy with the chatbot. This can be achieved by the chatbot's effective expressions of human emotions to chatbot users. Thus motivated, this study aims to identify the appropriate emotional expressions of a chatbot that make people feel the social presence of the chatbot. In the background research, we obtained that facial expression is the most effective way of emotions and movement is important for relationship emersion. In a survey, we prepared moving text, moving gestures, and still emoticon that represent five emotions such as happiness, sadness, surprise, fear, and anger. Then, we asked the best way for them to feel social presence with a chatbot in each emotion. We found that, for an arousal and pleasant emotion such as 'happiness', people prefer moving gesture and text most while for unpleasant emotions such as 'sadness' and 'anger', people prefer emoticons. Lastly, for the neutral emotions such as 'surprise' and 'fear', people tend to select moving text that delivers clear meaning. We expect that this results of the study are useful for developing emotional chatbots that enable more effective conversations with users.
This study confirms the responses of consumers when the composition of emoticon bundles can be selected by individuals in MIM service. This aims to verify that customized bundling is a valid marketing strategy in the MIM emoticon market. Currently, the emoticon bundling used in Korean MIM services is in the form of pure bundling. As a result, Consumers must purchase an entire bundle even though he/she doesn't need to use all the emoticons contained in it. Some researches(e.g. Hitt & Chen, 2005; Wu & Anandalingam, 2002) show that when consumers value only part of the products or services included in pure bundling, customized bundling is much more profitable. In their works, customized bundling is appropriate when marginal costs are near zero. Information goods, such as emoticons, meet the condition. On the other hand, customized bundling increase the choosable options, so it can pose a problem of complexity (Blecker et al., 2004). And consumers may experience information overload(Huffman & Kahn, 1998). Thus, judgement on the necessity to introduce customized bundling needs to be made through empirical analyses in the light of characteristics of the product and the reaction of consumers. Results show that when customized bundling was introduced, consumers' purchase intention and willingness to pay significantly increased. Purchase intention for customized bundles has increased by 0.44 based on the five point Likert scale than the purchase intention for existing pure bundles. The increase in purchase intention for customized bundles was statistically independent of the existing purchasing experience. In addition, the willingness to pay was increased by about 2.8% compared to the price of the existing emoticon bundles in the whole group. The group with experience in purchasing pure bundles were willing to pay 5.9% more than pure bundles. The other group without experience in purchasing pure bundles were willing to buy if they were about 5% cheaper than the existing price. Overall, introducing customized bundling into emoticon bundles can lead to positive consumers responses and be a viable marketing strategy.
Studies have found that people with higher social status pay little attention to other people's emotions and facial expressions. However, only a few studies have made similar observations on adolescents with high cyberspace social status. Therefore, this study sought to identify how adolescents with different online game character social statuses interpreted the smile emoticons in negative and positive situations, that is, did they perceive the emoticon to be positive (smile, encouragement, and consolation) or negative (derision, ridicule, and sarcasm). In Experiment 1, the participants were separated into three groups; those who had a lower than global average online game character status, those who had the same as the global average, and those who had higher than the global average. The participants were then asked to judge the meaning of the smile emoticon received in various positive or negative situations. In Experiment 2, the game character levels of the participants were set to be either higher or lower than the others' characters, and they were again asked to judge the meaning of the smile emoticon received in the positive or negative situations. In Experiment 3, the participants were separated into four groups; lower level than the average game character status (no information on the level of acquaintance's game character), lower than the average but higher than the character of the other, higher than the average status (no information on the other's character level), and higher than the average but lower than the character of the other, and asked to judge the meaning of the smile emoticon in positive or negative situations. It was found that when participants had a lower-level character compared to the average, had a lower-level character than the other, and had higher than the average but lower than the other's character, they interpreted the smile emoticon as derision, ridicule, or sarcasm. However, participants with higher level characters, higher than that of the other, and lower than the average but higher than the other interpreted the emoticon as a smile or consolation. This study was significant because it demonstrated the impact of an adolescent's social cyberspace status on their online communication.
In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.