• 제목/요약/키워드: emitting layer

검색결과 986건 처리시간 0.028초

발광 다이오드에서 분균일 전극의 Ohmic특성을 이용한 전류분포 균일도 향상 (Improvement of Current Uniformity by Adjusting Ohmic Resitivity on the Surface in Light Emitting Diodes)

  • 황성민;윤주선;심종인
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 동계학술발표회 논문집
    • /
    • pp.93-94
    • /
    • 2008
  • In order to suppress the current crowding in light emitting diodes (LEDs) grown on sapphire substrate, the effect of nonuniform contact resistivity between TME layer and p-GaN layer on the LED surface was theoretically investigated. The analysis results showed that current crowding occurring around p-electrode could be considerably improved, which in turn would be helpful to improve the electrostatic discharge (ESD) characteristic.

  • PDF

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

TPBI 전자 수송층을 이용한 청색 고분자 유기발광다이오드의 전기·광학적 특성 향상 (Improving the Electrical and Optical Properties of Blue Polymer Light Emitting Diodes by Introducing TPBI Electron Transport Layer)

  • 공수철;전창덕;유재혁;장호정
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.294-300
    • /
    • 2010
  • In this study, we fabricated a polymer light emitting diode (PLED) and investigated its electrical and optical characteristics in order to examine the effects of the PFO [poly(9,9-dioctylfluorene-2-7-diyl) end capped with N,N-bis(4-methylphenyl)-4-aniline] concentrations in the emission layer (EML). The PFO polymer was dissolved in toluene ranging from 0.2 to 1.2 wt%, and then spin-coated. To verify the influence of the TPBI [2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)]electron transport layer, TPBI small molecules were deposited by thermal evaporation. The current density, luminance, wavelength and current efficiency characteristics of the prepared PLED devices with and without TPBI layer at various PFO concentrations were measured and compared. The luminance and current efficiency of the PLED devices without TPBI layer were increased, from 117 to $553\;cd/m^2$ and from 0.015 to 0.110 cd/A, as the PFO concentration increased from 0.2 to 1.0 wt%. For the PLED devices with TPBI layer, the luminance and current efficiency were $1724\;cd/m^2$ and 0.501 cd/A at 1.0 wt% PFO concentration. The CIE color coordinators of the PLED device with TPBI layer at 1.0 wt% PFO concentration showed a more pure blue color compared with the one without TPBI, and the CIE values varied from (x, y) = (0.21, 0.23) to (x, y) = (0.16, 0.11).

TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용 (Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer)

  • 김보미;김정호;김지완
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.93-97
    • /
    • 2022
  • We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

Stabilization of the luminance efficiency in the blue organic light-emitting devices utilizing CBP and DPVBi emitting layers

  • Bang, H.S.;Choo, D.C.;Park, J.H.;Seo, J.H.;Kim, Y.K.;Kim, T.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1454-1456
    • /
    • 2007
  • The electrical and the optical properties of blue organic light-emitting devices (OLEDs) with a multiple emitting layer (EML) acting as electron and hole trapping layers were investigated. While the luminance efficiency of the OLEDs with a multiple EML was very stable, regardless of variations in the applied voltage.

  • PDF

유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰 (Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs))

  • 이원재
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

유기발광소자 특성에 미치는 PTFE 버퍼층의 영향 (Effect on the Characteristics of Organic Light-Emitting Devices due to the PTFE buffer layer)

  • 정준;오용철;정동희;정동관;김상걸;이수원;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1070-1073
    • /
    • 2003
  • We have studied the characteristics of organic light-emitting diodes(OLEDs) with the PTFE buffer layer. The OLEDs have been based on the molecular compounds, N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1, 1'- biphenyl-4, 4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinoline) aluminum (III) ($Alq_3$) as an electron transport and the Polytetrafluoroethylene (PTFE) as a buffer layer. The devices of structure were fabricated ITO/PTFE/TPD(40nm)/$Alq_3$(60nm)/Al( 150nm) to see the effects of the PTFE buffer layer in organic EL devices. The thickness of the PTFE layer varied from 0.5 to 10[nm]. We were measured Current-Voltage-Luminance Characteristics and Luminance efficiency due to the variation of PTFE thickness. the PTFE layer was reported that helped to enhance the hole tunneling injection and effectively impede induim diffusion from the ITO electrode. We have obtained an improvement of luminance efficiency when the PTFE thickness is 0.5[nm] is used. The improvement of efficiency of is expected due to a function of hole-blocking of PTFE in OLEDs.

  • PDF

형광층 및 절연층의 두께에 의한 휘도특성 (Relation of Luminance by Insulator and Phosphor Layer with Thin Type)

  • 박수길;조성렬;손원근;박대희;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 1998
  • Light-emitting diode(LEDs), diode arrays, and phosphor display panels are finding increased use in a variety of commercial applications. Present and anticipated application of these devices include solid state indicator(e.g., digital clocks, meter readout) and display systems(e.g., instrument panels, TV display), the application being determined by the light -output capability and size availability(cost) of the particular device. In this work, Phosphor based on ZnS:Cu are used. Relation by luminance with the thickness of insulating layer and phosphor layer are discussed. Increased thickness of insulating layer are stable on voltage to 300V. By considering thickness and voltage, optimal structure and thickness are investigated. Also in order to maximize even surface emission, various sieving process are introduced. Very similar phosphor particle size is selected. Luminance by various wave intensity is also investigated. 150cd/m$^2$ luminance are investigated in stable voltage and frequency.

  • PDF

White organic light emitting diode with single emission layer DPVBi partially doped with rubrene

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1002-1005
    • /
    • 2006
  • In this study, we fabricated white organic light emitting devices (WOLEDs) to use single emission layer, DPVBi with partially doped Rubrene. To realize white color, rubrene with 3.6% was partially doped with the gap from interface between DPVBi and hole transport layer NPD in a definite DPVBi layer. As the gap was increased, the intensity of orange peak grows less and less. The WOLED with gap of $5\;{\AA}$ has the best color stability and its color coordination is (0.345, 0.321) at 6V.

  • PDF

Characteristic Improvements of Organic Light Emitting Diodes By Using Co-Evaporated Cathodes

  • Kwak, Y.H.;Lee, Y.S.;Park, J.H.;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.710-713
    • /
    • 2002
  • In order to improve the power efficiency of multi-layer organic light emitting diodes (OLEDs), electron injection into ETL(electron transport layer) from cathode at the interface between ETL and cathode was enhanced by interposing a proper electron injection layer at the interface. The HTL(hole transport layer) and ETL materials used were N, N'diphenyl- N, N' - bis(3-methylphenyl-1, 1'- biphenyl - 4, 4 'diamine (TPD) and tris (8-hydroxyquinoline) aluminum ($Alq_3$) respectively. Cathodes using co-evaporated Al-CsF, Al-KF, and Al-NaF composites are adopted to enhance the electrical and optical properties of OLEDs. OLEDs with alkaline metal-doped cathode show a luminance of as high as 35,000 cd/$m^2$, and external quantum efficiency about 1.35 %. In addition, they show higher power efficiency at all bias conditions and good reproducibility.

  • PDF