• Title/Summary/Keyword: emitting layer

Search Result 986, Processing Time 0.028 seconds

Optical Effect due to Thickness Variation of Electron Injection Layer in Organic Light-emitting Diodes

  • Lee, Young-Hwan;Lee, Kang-Won;Yi, Keon-Young;Hong, Jin-Woong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.20-23
    • /
    • 2008
  • Organic light-emitting diodes (OLEDs) are attractive because of possible application in display with low-operating voltage, low-power consumption, self-emission and capability of multicolor emission by the selection of emissive materials. To investigated the optical effects, we studied the electrical and optical characteristics due to thickness variation of electron injection materials LiF on organic light-emitting diodes in the ITO (indium-tin-oxide)/N,N'-diphenyl-N, N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline) aluminum $(Alq_3)/LiF$ layer/Al device. We maintained the thicknesses of TPD and $Alq_3$ layers at 40 nm and 60 nm, respectively. The deposition rates of TPD and $Alq_3$ were in the $1.5{\AA}/s$ under a base pressure of $5{\times}10^{-6}$ Torr. It was found that luminance and luminous efficiency of the device with 0.7 nm LiF layer improve 25 times and 7 times than the device without the LiF layer, respectively.

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer (Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상)

  • Kim, C.Y.;Kwon, S.R.;Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) of a 405 nm wavelength have been fabricated on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). In order to reflect the photons, which are generated in the InGaN active region and emitted to the backside, to the front surface, a reflection layer was deposited onto the back of the substrate. Aluminum was used as the reflection layer and Al was deposited on the sample followed by Ti evaporation for firm adhesion of the reflection layer to the substrate. The light extraction efficiency was enhanced 52 % by adoption of the Ti-Al reflection layer.

Effects of BCP Thickness on the Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes (BCP 두께가 청잭 인광 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.781-785
    • /
    • 2009
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses (25 and 55 nm) of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) electron transport layers. 1,1-bis[4-bis (4-methylphenyl)- aminophenyllcyclohexane (TAPC), bis[(4,6-di-fluorophenyl)-pyridinate-$N,C^{2'}$]picolinate (FIrpic) and N,N' -dicarbazolyl-3,5-benzene (mCP) were used as hole transport, blue guest and host materials, respectively. The driving voltage, electroluminescence (EL) efficiency and emission characteristics of devices were investigated. The maximum EL efficiency was 20 cd/A in the device with 55 nm BCP layer, which efficiency was about 33% higher than the device with 25 nm BCP layer. The higher efficiency in the 55 nm BCP device resulted from the enhanced electron-hole balance. In the EL spectrum of blue phosphorescent OLED with BCP layer, the relative intensity between 470 and 500 nm peaks was related to the location of emission zone.

A Study on Characteristics of Light Emitting Diode with Porous Silicon (다공성 실리콘을 이용한 LED의 발광 특성에 관한 연구)

  • Lee Sung-Hoon;Lee Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.39-43
    • /
    • 2000
  • The light emitting diode (LED) was fabricated from n-type porous silicon. We investigated both the current-voltage characteristics of the LED with various electrode materials and changes of electroluminescence with applied current density. Also we probed changes in electroluminescence as a function of operation time at a given current. In order to Improve the contact area between the electrode material and porous silicon layer, we deposited indium on porous silicon layer by electroplating and investigated the electric characteristics of the LED and changes of electroluminescence.

The Fabrication and Characteristics of White Organic Light-Emitting Diodes using Blue and Orange Emitting Materials (청색과 오렌지색 발광재료를 사용한 백색 유기발광소자 제작 및 특성 분석)

  • Kang, Myung-Koo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The white organic light emitting diode(OLED) with two-wavelength was fabricated using the DPVBi of blue emitting material and a series of orange colar fluorescent dye(Rubrene) by vaccum evaporation processes. The basic structure of OLED was ITO/TPD$(225{\AA})$/DPVBi/Rubrene/BCP$(210{\AA})/Alq_3(225{\AA})/Al(1000{\AA})$. We analyzed the fabricated device through the changes of the DPVBi and Rubrene layer's thickness. We obtained the white OLED with the CIE coordinate of the device was (0.29, 0.33) and luminescence of $1000cd/m^2$ at applied voltage of 15V when 4he thickness of DPVBi layer was 210${\AA}$ and the thickness of Rubrene layer was 180${\AA}$.

Highly Efficient Three Wavelength WOLEDs by Controlling of Electron-Transfer

  • Park, Ho-Cheol;Park, Jong-Wook;Oh, Seong-Geu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2299-2302
    • /
    • 2009
  • By controlling the number of electrons transferred to the emitting layer, highly efficient three-wavelength WOLEDs were fabricated. Such WOLEDs are different from those made using simple stacking of RGB emitting layers in that the movement distribution of electrons transferred to emitting layer could be adjusted using the difference in LUMO energy level and that lights of all 3 wavelengths could be emitted through appropriate arrangement of RGB emitting layers. WOLED device with the structure of m-MTDTA (40 nm)/NPB (10 nm)/ Coumarin6 doped $Alq_3$ (3%) (8 nm)/ Rubrene doped NPB (5%) (15 nm)/NPB (2 nm)/ DPVBi (20 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) showed high luminance efficiency of 8.9 cd/A and color purity of (0.31, 0.40). In addition, WOLED device with the thickness of non-doped NPB layer increased from 2 nm to 3 nm to increase blue light emission showed a luminance efficiency of 7.6 cd/A and color purity of (0.28, 0.36).

Synthesis and Application of the Novel Azomethine Metal Complexes for the Organic Electroluminescent Devices

  • Kim, Seong Min;Kim, Jin Sun;Sin, Dong Myeong;Kim, Yeong Gwan;Ha, Yun Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.743-747
    • /
    • 2001
  • New azomethine metal complexes were synthesized systematically and characterized. Beryllium, magnesium, or zinc ions were used as a central metal cation and aromatic azomethines (L1-L4) were employed as a chelating anionic ligand. Emission peaks o f the complexes in both solution and solid states were observed mostly at the region of 400-500 nm in the luminescence spectra, where blue light was emitted. Three of them (BeL1 (Ⅰ), ZnL2 (Ⅱ), and ZnL3 (Ⅲ)) were sublimable and thus were applied to the organic light-emitting devices (OLED) as an emitting layer, respectively. The device including the emitting layer of Ⅰ exhibited white emission with the broad luminescence spectral range. The device with the emitting layer of Ⅱ showed blue luminescence with the maximum emission peak at 460 nm. Their ionization potentials, electron affinities, and electrochemical band gaps were investigated with cyclic voltammetry. The electrochemical gaps of 2.98 for I, 2.70 for Ⅱ, and 2.63 eV for Ⅲ were found to be consistent with their respective optical band gaps of 3.01, 2.95 and 2.61 eV within an experimental error. The structure of OLED manufactured in this study reveals that these complexes can work as electron transporting materials as well.

Improvement of the permeation properties with a thin hybrid - passivation layer to apply the Large-sized Organic Display Devices

  • Lee, Joo-Won;Bea, Sung-Jin;Park, Jung-Soo;Lee, Young-Hoon;Chin, Byung-Doo;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1779-1783
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1wt%) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007g/m^2$ per day at $37.8^{\circ}C$ and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.