• Title/Summary/Keyword: emission pattern

Search Result 451, Processing Time 0.025 seconds

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Current and Future Changes in the Type of Wintertime Precipitation in South Korea (현재와 미래 우리나라 겨울철 강수형태 변화)

  • Choi, Gwang-Yong;Kwon, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.1-19
    • /
    • 2008
  • This study intends to clarify the characteristics and causes of current changes in wintertime precipitation in Korea and to predict the future directions based on surface observational $(1973/04\sim2006/07)$ and modeled (GFDL 2.1) climate data. Analyses of surface observation data demonstrate that without changes in the total amount of precipitation, snowfall in winter (November-April) has reduced by 4.3cm/decade over the $1973\sim2007$ period. Moreover, the frequency and intensity of snowfall have decreased; the duration of snow season has shortened; and the snow-to-rain day ratio (STDR) has decreased. These patterns indicate that the type of wintertime precipitation has changed from snow to rain in recent decades. The snow-to-rain change in winter is associated with the increases of air temperature (AT) over South Korea. Analyses of synoptic charts reveal that the warming pattern is associated with the formation of a positive pressure anomaly core over northeast Asia by a hemispheric positive winter Arctic Oscillation (AO) mode. Moreover, the differentiated warming of AT versus sea surface temperature (SST) under the high pressure anomaly core reduces the air-sea temperature gradient, and subsequently it increases the atmospheric stability above oceans, which is associated with less formation of snow cloud. Comparisons of modeled data between torrent $(1981\sim2000)$ and future $(2081\sim2100)$ periods suggest that the intensified warming with larger anthropogenic greenhouse gas emission in the $21^{st}$ century will amplify the magnitude of these changes. More reduction of snow impossible days as well as more abbreviation of snow seasons is predicted in the $21^{st}$ century.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • Hwang, In-Chan;Seo, Gwan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

Synthesis of O-(3-[18F]Fluoropropyl)-L-tyrosine (L-[18F]FPT) and Its Biological Evaluation in 9L Tumor Bearing Rat

  • Moon, Byung-Seok;Kim, Sang-Wook;Lee, Tae-Sup;Ahn, Soon-Hyuk;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.91-96
    • /
    • 2005
  • O-(3-[$^{18}$F]Fluoropropyl)-L-tyrosine (L-[$^{18}$F]FPT) was synthesized by nucleophilic radiofluorination followed by acidic hydrolysis of protective groups and evaluated with 9 L tumor bearing rat. L-[$^{18}$F]FPT is an homologue of O-(2-[$^{18}$F]fluoroethyl)-L-tyrosine (L-[$^{18}$F]FET) which recently is studied as a tracer for tumor imaging using positron emission tomography (PET). [$^{18}$F]FPT was directly prepared from the precursor of O-(3-ptoluenesulfonyloxypropyl)- N-(tert-butoxycarbonyl)-L-tyrosine methyl ester. FPT-PET image was obtained at 60 min in 9 L tumor bearing rats. The radiochemical yield of [$^{18}$F]FPT was 0-45% (decay corrected) and the radiochemical purity was more than 95% after HPLC purification. The total time elapsed for the synthesis of [$^{18}$F]FPT was 100 min from EOB (End-of-bombardment). A comparison of uptake studies between [$^{18}$F]FPT and [$^{18}$F]FET was performed. In biodistribution, [$^{18}$F]FPT showed similar pattern with [$^{18}$F]FET in various tissues, but [$^{18}$F]FPT showed low uptake in brain. Furthermore, [$^{18}$F]FPT showed higher tumor-to-brain ratio than [$^{18}$F]FET. In conclusion, [$^{18}$F]FPT seems to be more useful amino acid tracer than [$^{18}$F]FET for brain tumors imaging with PET.

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation (수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구)

  • Yoon, Jeoung Seok;Hakimhashemi, Amir;Zang, Arno;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.493-505
    • /
    • 2013
  • This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

A study of ubiquitous-RTLS system for worker safety (작업자 안전관리를 위한 유비쿼터스-실시간 위치추적시스템 연구)

  • Kim, Young-Baig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.1-7
    • /
    • 2012
  • At the industrial work site, the manufacturing process is being automated to improve work efficiency. However, it is often difficult to automate the entire manufacturing process, and there are spaces in which workers there are constantly exposed to danger. To protect such workers from the danger, this paper studied a worker safety management system for the industrial work site which uses a location recognition system and which is based on the Ubiquitous-Wireless Sensor Network (U-WSN). Using wireless signals, the distance between two devices can be measured and the location of a worker can be calculated using triangularization in 3-D. But at the industrial work sites where there are a lot of steel and structures, errors occur due to signal reflection and multi-path, etc., which makes it difficult to get the accurate location. To address this problem the following was done: first, a circular polarization patch antenna appropriate to the work site was used to reduce the degree of error that may occur from the antenna emission pattern and the particular Line of Sight (LOS); second, a 3-D localization technique and a filtering algorithm were used to improve the accuracy of location determination. The developed system was tested by using it on a wharf crane to validate its accuracy and effectiveness. The proposed location recognition system is expected to contribute greatly in ensuring the safety of workers at industrial work sites.

Facile Synthesis of In2S3 Modified Ag3PO4 Nanocomposites with Improved Photoelectrochemical Properties and Stabilities

  • Zeng, Yi-Kai;Bo, Shenyu;Wang, Jun-hui;Cui, Bin;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.601-608
    • /
    • 2020
  • In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the as-prepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.

An Impact Assessment of Climate and Landuse Change on Water Resources in the Han River (기후변화와 토지피복변화를 고려한 한강 유역의 수자원 영향 평가)

  • Kim, Byung-Sik;Kim, Soo-Jun;Kim, Hung-Soo;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.309-323
    • /
    • 2010
  • As climate changes and abnormal climates have drawn research interest recently, many countries utilize the GCM, which is based on SRES suggested by IPCC, to obtain more accurate forecast for future climate changes. Especially, many research attempts have been made to simulate localized geographical characteristics by using RCM with the high resolution data globally. To evaluate the impacts of climate and landuse change on water resources in the Han-river basin, we carried out the procedure consisting of the CA-Markov Chain, the Multi-Regression equation using two independent variables of temperature and rainfall, the downscaling technique based on the RegCM3 RCM, and SLURP. From the CA-Markov Chain, the future landuse change is forecasted and the future NDVI is predicted by the Multi-Regression equation. Also, RegCM3 RCM 50 sets were generated by the downscaling technique based on the RegCM3 RCM provided by KMA. With them, 90 year runoff scenarios whose period is from 2001 to 2090 are simulated for the Han-river basin by SLURP. Finally, the 90-year simulated monthly runoffs are compared with the historical monthly runoffs for each dam in the basin. At Paldang dam, the runoffs in September show higher increase than the ones in August which is due to the change of rainfall pattern in future. Additionally, after exploring the impact of the climate change on the structure of water circulation, we find that water management will become more difficult by the changes in the water circulation factors such as precipitation, evaporation, transpiration, and runoff in the Han-river basin.

Clinicopathologic Characteristics of Recurrence after Curative-intent Surgical Therapy of Non-small Cell Lung Cancer (근치적 수술 후 재발한 I, II 병기 비소세포폐암의 임상양상 및 조직학적 유형의 차이 비교)

  • Song, Sung-Heon;Sohn, Jang-Won;Kwak, Hyun-Jung;Kim, Sa-Il;Lee, Seung-Ho;Kim, Sang-Heon;Kim, Tae-Hyung;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.4
    • /
    • pp.330-337
    • /
    • 2011
  • Background: The clinicopathologic characteristics of patients with non-small cell lung cancer (NSCLC) have been changing. Recently, Positron emission tomography-computed tomography (PET-CT) has usually been used for diagnosis, follow-up to treatment and surveillance of NSCLC. We studied the pattern of recurrence and prognosis in patients who underwent complete resection for NSCLC according to histologic subtype. Methods: All patients who underwent complete resection for pathological stage I or II NSCLC between January 2005 and June 2009 were identified and clinical records were reviewed retrospectively, especially the histologic subtype. Results: Recurrences were identified in 50 of 112 patients who had complete resection of an NSCLC. Sites of recurrence were locoregional in 15 (30%), locoregional and distant in 20 (40%), and distant in 15 (30%). Also, sites of recurrence were intra-thoracic in 29 (58%), extrathoracic and intra-thoracic recurrence in 15 (30%), and extrathoracic in 6 (12%). In locoregional recurrence, there was 37% recurrence for non-squamous cell carcinoma (non-SQC) and 25% for squamous cell carcinoma (SQC). In distant recurrence, there was 39% recurrence for non-SQC and 18% for SQC. Locoregional recurrence in the bronchial stump was more common in SQC than non-SQC (14% vs. 45%, p=0.025). Prognosis of recurrence was not influenced by histologic subtype and the recurrence-free survival curve showed that the non-SQC group did not differ from the SQC group according to stage. Conclusion: The prognosis for recurrence does not seem to be influenced by histologic types, but locoregional recurrence in the bronchial stump seems to be more common in SQC than non-SQC in completely resected stage I and II NSCLC.