• Title/Summary/Keyword: emission of ammonia gas

Search Result 125, Processing Time 0.024 seconds

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Effects of Dietary Glycine Betaine on the Growth Performance in Pigs (Glycine betaine 첨가가 돼지의 생산성에 미치는 영향)

  • Kwak, S.C.;Kim, J.H.;Ha, Y.J.;Lee, J.I.;Lee, J.R.;Jung, J.D.;Lee, J.D.;Park, G.B.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This study was conducted to investigate the effect of the addition of glycine betaine to the diet on growth performance in pigs. A total of 400 pigs were divided into 4 feeding stages(Growing I: 23.10 $\pm$ 1.43, Growing II: 37.69$\pm$ 1.62, Finishing I: 66.51 $\pm$3.44 and Finishing II: 90.42$\pm$ 2.17 kg of initial body weight) then each feeding stage was divided into 4 treatment groups(Control: 0 0/0, Tl : 0.2 0/0, T2: 0.4% and T3 : 0.6 % of glycine betaine, respectively). The average daily gain and feed efficiency of T2 and T3 were significantly increased(p< 0.05) by dietary glycine betaine in stage I, 2 and 3. This result indicates that dietary glycine betaine could influence the pig growth performance. In feeding stage 4, the average daily gain and feed efficiency were significantly increased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05). Results suggest that feeding the pigs 0.4 % glycine betaine could be the most efficient dietary level. Crude protein, ether extract and crude ash digestibilities of 0.4% glycine betaine fed group were significantly increased compared with those of control group(p < 0.05). However, no significant difference was found in nutrient digestibilities among glycine betaine fed groups. Apparent faecal amino acid digestibilities of 0.4% glycine betaine fed group were more significantly higher than that of control group. The 0.4% glycine betaine fed group was significantly increased in apparent faecal amino acid digestibility compared with those of other glycine betaine fed group. No significant difference was shown in amount of microflora population between control and glycine betaine fed groups. Ammonia and hydrogen sulfide gas emission were significantly decreased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05).

Effects of Mustard Seeds and Powder on In vitro Ruminal Fermentation Characteristics and Methane Production (겨자종자와 겨자분의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Lee, Kang Yeon;Kim, Kyoung Hoon;Baek, Youl Chang;Ok, Ji Un;Seol, Yong Joo;Han, Ki Jun;Park, Keun Kyu;Ryu, Ho Tae;Lee, Sang Suk;Jeon, Che Ok;Oh, Young Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • The purpose of this study was to investigate the effects of mustard, which contains allyl isothiocyanate, on ruminal fermentation and methane emission in vitro. To this end, diluted ruminal fluid(30ml) was incubated anaerobically at $39^{\circ}C$ or 6, 12, and 24 h with or without seeds or powdered mustard. Either mustard seed or powdered mustard was weighed and serially (0, 3.33, 5.00, 6.67, and 8.33 g/L) mixed with ruminal fluid. Ammonia-N was increased (P < 0.05) by mustard treatment in a dose dependent manner. Regardless of concentration or form, mustard increased (P < 0.05) total VFA content but decreased (P < 0.01) pH compared to control group. Molar proportion of acetate (A) was decreased (P < 0.05) whereas propionate (P) was increased (P < 0.05) by mustard treatment, thereby A:P ratio was decreased (P < 0.05) compared to control group. Total gas production was increased (P < 0.01) in a linear manner by mustard treatment compared to control group. There was no effect of mustard powder, except 8.33 g/L level at 6 h, on methane emission. However, at 24 h, methane emission was reduced (P < 0.05) by 4.77% and 11.54% with 6.67 g/L and 8.33 g/L of mustard seeds supplementation, respectively. Altogether, these results suggest that mustard seeds containing allyl isothiocyanate may reduce methane production without disturbing ruminal fermentation.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Effects of Nitrate-rich Plant Extracts on the in vitro Ruminal Fermentation and Methane Production (질산염 화합물 함유 식물 추출물이 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Kim, Min Sung;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.95-105
    • /
    • 2016
  • This study was conducted to evaluate the effects of nitrate-rich plants extracts on the in vitro rumen fermentation characteristics and rumen methane production. The extracts of nitrate-rich plants, as potato, carrot, chinese cabbage, lettuce and spinach were used in this study. The ruminal fluid was collected from a cannulated Hanwoo cow fed concentrate and timothy in the ratio of 6 to 4. The 20mL of mixture, comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically 50mL serum bottles containing 0.3g of timothy substrate and extracts of nitrogen-rich plants. The serum bottles were incubated 39℃ for 9, 12, 24, 48 hours. The pH value was decreased by increased incubation times and normal range to 6.31 to 6.96. The dry matter digestibility was significantly(p<0.05) lower in chinese cabbage than in control at 9h incubation time. Ammonia concentration was significantly(p<0.05) lower in potato, chinese cabbage, lettuce than in control and the rumen microbial growth rate was significantly(p<0.05) higher in carrot than in control at 24h incubation time. The concentrations of acetate and propionate was significantly(p<0.05) lower in treatment than in control. The concentration of butyrate was showed a different pattern depending on treatments. Total gas emissions was significantly(p<0.05) lower in chinese cabbage, lettuce, spinach than in control at 12h, 24h incubation time. Methane production was significantly(p<0.05) lower in potato, chinese cabbage, spinach than in control, carbon dioxide production was significantly(p<0.05) lower in treatment than in control. In conclusion, supplementation of the nitrate-rich plant extracts in ruminal fermentation in vitro resulted in decreasing the methane production without adversely affecting the fermentation characteristics. Particularly the chinese cabbage extract was regard as a potential candidate for reducing the methane emission in ruminants.