• Title/Summary/Keyword: emission factor

Search Result 978, Processing Time 0.028 seconds

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios (암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가)

  • Gunyoung Kim;Yinseo Song;Boram Gu;Kiho Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.

Exploring indicators of genetic selection using the sniffer method to reduce methane emissions from Holstein cows

  • Yoshinobu Uemoto;Tomohisa Tomaru;Masahiro Masuda;Kota Uchisawa;Kenji Hashiba;Yuki Nishikawa;Kohei Suzuki;Takatoshi Kojima;Tomoyuki Suzuki;Fuminori Terada
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • Objective: This study aimed to evaluate whether the methane (CH4) to carbon dioxide (CO2) ratio (CH4/CO2) and methane-related traits obtained by the sniffer method can be used as indicators for genetic selection of Holstein cows with lower CH4 emissions. Methods: The sniffer method was used to simultaneously measure the concentrations of CH4 and CO2 during milking in each milking box of the automatic milking system to obtain CH4/CO2. Methane-related traits, which included CH4 emissions, CH4 per energy-corrected milk, methane conversion factor (MCF), and residual CH4, were calculated. First, we investigated the impact of the model with and without body weight (BW) on the lactation stage and parity for predicting methane-related traits using a first on-farm dataset (Farm 1; 400 records for 74 Holstein cows). Second, we estimated the genetic parameters for CH4/CO2 and methane-related traits using a second on-farm dataset (Farm 2; 520 records for 182 Holstein cows). Third, we compared the repeatability and environmental effects on these traits in both farm datasets. Results: The data from Farm 1 revealed that MCF can be reliably evaluated during the lactation stage and parity, even when BW is excluded from the model. Farm 2 data revealed low heritability and moderate repeatability for CH4/CO2 (0.12 and 0.46, respectively) and MCF (0.13 and 0.38, respectively). In addition, the estimated genetic correlation of milk yield with CH4/CO2 was low (0.07) and that with MCF was moderate (-0.53). The on-farm data indicated that CH4/CO2 and MCF could be evaluated consistently during the lactation stage and parity with moderate repeatability on both farms. Conclusion: This study demonstrated the on-farm applicability of the sniffer method for selecting cows with low CH4 emissions.

Influence of N Fertilization Level, Rainfall, and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Soybean Cultivation (콩 재배 화산회토양에서 질소시비 수준 및 강우, 온도 환경 변화에 따른 아산화질소 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.451-458
    • /
    • 2012
  • This study was conducted to investigate the characteristic factors which have been influenced on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature during the soybean cultivation at black volcanic ash soil from 2010 to 2011. During the soybean cultivation, the more amount of nitrogen fertilizer applied, $N_2O$ emissions amounts were released much. $N_2O$ emissions with the cultivation time were released much at the first and middle of cultivation with heavy rainfall, but it was released very low until the end of cultivation and drought season. $N_2O$ emissions mainly were influenced by the rainfall and soil water content. The correlation ($r$) with $N_2O$ emissions, soil water, soil temperature and soil EC in 2010 were very significant at $0.4591^{**}$, $0.6312^{**}$ and $0.3691^{**}$ respectively. In 2011, soil water was very significant at $0.4821^{**}$, but soil temperature and soil EC were not significant at 0.1646 and 0.1543 respectively. Also, $NO_3$-N and soil nitrogen ($NO_3-N+NO_4-N$) were very significant at $0.6902^{**}$ and $0.6277^*$ respectively, but $NO_4$-N was not significant at 0.1775. During the soybean cultivation, the average emissions factor of 2 years released by the nitrogen fertilizer application was presumed to be 0.0202 ($N_2O$-N kg $N^{-1}\;kg^{-1}$). This factor was higher about 2.8 and 2 times than the Japan's (0.0073 $N_2O$-N kg $N^{-1}\;kg^{-1}$) value and 2006 IPCC guideline default value (0.0100 $N_2O$-N kg $N^{-1}\;kg^{-1}$) respectively.

A Study about Development of Environment Printing Technology and $CO_2$ (환경 인쇄 기술의 발전과 인쇄물의 $CO_2$ 발생량에 관한 연구)

  • Lee, Mun-Hag
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.89-114
    • /
    • 2012
  • For as to world, the concern about the environment problem is enhanced than any other time in the past because of being 21 century. And the environment problem is highlighted as the world-wide issue. The time of the environment problem intimidates the alive of the mankind and presence of an earth over the time. It becomes the essentiality not being selection in the personal living or the economical viewpoint now to prepare for the climatic modification. As to the company management, the green growth period which it excludes the environment management considering an environment, cannot carry on the company the continued management comes. That is, in the change center of the management paradigm, there is the environment management. Nearly, the greenhouse gas which the publication industry is the environmental toxic material like all industries is generated. The greenhouse gas is ejected in the process of running the manufacturing process and print shop of the various kinds material used as the raw material of the book. Particularly, the tree felling for getting the material of the paper is known to reach the direct influence on the global warming. This study does according to an object it considers and organizes the environment parameter based on this kind of fact as to the publication industry. And it is determined as the reference which is used as the basic materials preparing the case that carbon exhaust right transaction(CAP and TRADE) drawing are enforced in all industries and is sustainable the management of the publication industry and reduces the environmental risk among the company many risk management elements and plans and enforces the publication related policy that there is a value. In the printing publication industry, this study tried to inquire into elements discharging the environmental pollutant or the greenhouse gas. Additionally, in the printed publication production process, it tried to inquire into the effort for an environment-friendly and necessity at the printing paper and the printers ink, regarded as the element discharging the greenhouse gas all kinds of the printing materials, operation of the print shop and all kinds of the machines and recycle process, and etc. These considerations make these industrial field employees aware of the significance about a conservation and environmental protection. They try to give a help in the subsequent study producing quantitatively each environmental parameter emission of green house gas. This makes the calculation of the relative $CO_2$ output reproached ultimately possible. Meanwhile, in a sense, many research protects and improving an environment in connection with the contents of research at the printing publication industrial field is in progress. There will be the voluntary human face that it has to protect an environment but this can not do by the outside factor according to all kinds of environment related law and regulation. Anyway, because of acting on company management as the factor of oppression, the increase of this environment-related correspondence cost could know that the research that the environment loading relates with a procurement and development, environment management system introduction, quality control standard, including, normalizing including a material, and etc. through the part of the effort to reduce the cost low was actively in progress. As to the green growth era, as follows, this paper prescribed the subject and alternative of the print publication industry. It is surrounded by the firstly new digital environment and the generation of the subject. And secondly the printing industry is caused by the point of time when the green growth leaves by the topic which is largest in the global industry and it increases. The printing publication industry has to prepare the bridgehead for the environment-friendly green growth as the alternative for this resolution with first. The support blown in each industry becomes the obligation not being selection. Prestek in which the print publishing was exposed to spend many energies and which is known as the practice of the sustainable print publishing insisted that it mentioned importance of the green printing through the white pages in 2008 and a company had to be the green growth comprised through the environment-friendly activity. The core management for the sustainable printing publication industry presented from Presstack white pages is compacted to 4 words that it is a remove, reduce, recover, and recycle. Second, positively the digital printing(POD) system should be utilized. In the worldwide print out market, the digital printing area stops at the level of 10% or so but the change over and growth of the market of an analog-to-digital will increase rapidly in the future. As to the CEO Jeff Hayes of the Infoland, the offset print referred to that it of the traditional method got old and infirm with the minor phase of the new printing application like the customer to be wanted publication and the print of the digital method led the market. In conclusion, print publishers have to grasp well the market flow in the situation where a digitalization cannot be generalized and a support cannot avoid. And it keeps pace with the flow of the digital age and the recognition about the effort for the development and environment problem have to be raised. Particularly, the active green strategy is employed for the active green strategy.

Influence of N Fertilization Level, Rainfall and Temperature on the Emission of N2O in the Jeju Black Volcanic Ash Soil with Potato Cultivation (감자 재배 화산회토양에서 질소시비 수준, 강우 및 온도 환경 변화에 따른 아산화질소 배출 특성)

  • Yang, Sang-Ho;Kang, Ho-Jun;Lee, Shin-Chan;Oh, Han-Jun;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.544-550
    • /
    • 2012
  • This study was conducted to investigate the characteristic factors which have been influenced on nitrous oxide ($N_2O$) emissions related to the environment change of nitrogen application level, rainfall and temperature during the potato cultivation at black volcanic ash soil from 2010 to 2011. During the potato cultivation, the more amount of nitrogen fertilizer applied, $N_2O$ emissions amounts were released much. $N_2O$ emissions with the cultivation time were released much at the first and middle of cultivation with heavy rainfall, but it was released very low until the end of cultivation and drought season. $N_2O$ emissions mainly were influenced by the rainfall and soil water content. The correlation (r) with $N_2O$ emissions, soil wate, soil temperature in 2010 were very significant at $0.6251^{**}$ and $0.6082^{**}$ respectively, but soil EC was not significant to 0.10824. In 2011, soil temperature was very significant at $0.4879^{**}$, but soil water and soil EC were not significant at 0.0468 and 0.0400 respectively. Also, $NH_4$-N was very significant at $0.7476^{**}$, but $NO_3$-N and soil nitrogen ($NO_3-N+NH_4-N$) were not significant at 0.0843 and 0.1797, respectively. During the potato cultivation period, the average emissions factor of 2 years released by the nitrogen fertilizer application was presumed to be 0.0040 ($N_2O-N\;kg\;N^{-1}\;kg^{-1}$). This factor was lower about 2.5 times than the IPCC guideline default value (0.0100 $N_2O-N\;kg\;N^{-1}\;kg^{-1}$).

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Fabrication of Strain Sensor Based on Graphene/Polyurethane Nanoweb and Respiration Measurement (그래핀/폴리우레탄 나노웹 기반의 스트레인센서 제작 및 호흡측정)

  • Lee, Hyocheol;Cho, Hyeon-seon;Lee, Eugene;Jang, Eunji;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The purpose of this study is to develop a strain sensor based on a nanoweb by applying electrical conductivity to a polyurethane nanoweb through the use of Graphene. For this purpose, 1% Graphene ink was pour-coated on a polyurethane nanoweb and post-treated with PDMS (Polydimethylsiloxane) to complete a wearable strain sensor. The surface characteristics of the specimens were evaluated using a field emission scanning electron microscope (FE-SEM) to check whether the conductive material was well coated on the surface of the specimen. Electrical properties of the specimens were measured by using a multimeter to measure the linear resistance of the specimen and comparing how the line resistance changes when 5% and 10% of the specimens are tensioned, respectively. In order to evaluate the performance of the specimen, the gauge factor was obtained. The evaluation of the clothing was performed by attaching the completed strain sensor to the dummy and measuring the respiration signal according to the tension using MP150 (Biopac system Inc., USA) and Acqknowledge (ver. 4.2, Biopac system Inc., U.S.A.). As a result of the evaluation of the surface characteristics, it was confirmed that all the conductive nanoweb specimen were uniformly coated with the Graphen ink. As a result of measuring the resistance value according to the tensile strength, the specimen G, which was treated with just graphene had the lowest resistance value, the specimen G-H had the highest resistance value, and the change of the line resistance value of the specimen G and the specimen G-H is increased to 5% It is found that it increases steadily. Unlike the resistance value results, specimen G showed a higher gauge rate than specimen G-H. As a result of evaluation of the actual clothes, the strain sensor made using the specimen G-H measured the stable peak value and obtained a signal of good quality. Therefore, we confirmed that the polyurethane nanoweb treated with Graphene ink plays a role as a breathing sensor.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.