• 제목/요약/키워드: emission computed tomography

검색결과 390건 처리시간 0.027초

Management and rehabilitation of moderate-to-severe diabetic foot infection: a narrative review

  • Chi Young An;Seung Lim Baek;Dong-Il Chun
    • Journal of Yeungnam Medical Science
    • /
    • 제40권4호
    • /
    • pp.343-351
    • /
    • 2023
  • Diabetic foot is one of the most devastating consequences of diabetes, resulting in amputation and possibly death. Therefore, early detection and vigorous treatment of infections in patients with diabetic foot are critical. This review seeks to provide guidelines for the therapy and rehabilitation of patients with moderate-to-severe diabetic foot. If a diabetic foot infection is suspected, bacterial cultures should be initially obtained. Numerous imaging studies can be used to identify diabetic foot, and recent research has shown that white blood cell single-photon emission computed tomography/computed tomography has comparable diagnostic specificity and sensitivity to magnetic resonance imaging. Surgery is performed when a diabetic foot ulcer is deep and is accompanied by bone and soft tissue infections. Patients should be taught preoperative rehabilitation before undergoing stressful surgery. During surgical procedures, it is critical to remove all necrotic tissue and drain the inflammatory area. It is critical to treat wounds with suitable dressings after surgery. Wet dressings promote the formation of granulation tissues and new blood vessels. Walking should begin as soon as the patient's general condition allows it, regardless of the wound status or prior walking capacity. Adequate treatment of comorbidities, including hypertension and dyslipidemia, and smoking cessation are necessary. Additionally, broad-spectrum antibiotics are required to treat diabetic foot infections.

MEG 영상진단 검사에 관한 연구 (A Study on the MEG Imaging)

  • 김종규
    • 대한임상검사과학회지
    • /
    • 제37권2호
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권3호
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영 (Functional Neuroimaging in Epilepsy: FDG-PET and SPECT)

  • 이상건;이동수
    • 대한핵의학회지
    • /
    • 제37권1호
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

관상동맥질환에서 심장 하이브리드 영상의 임상적 이용 (Clinical Application of Cardiac Hybrid Imaging in Coronary Artery Disease)

  • 조인호;공은정
    • Journal of Yeungnam Medical Science
    • /
    • 제26권1호
    • /
    • pp.15-23
    • /
    • 2009
  • Constant technological developments in coronary artery disease have contributed to the assessment of both the presence of coronary stenosis and its hemodynamic consequences. Hence, noninvasive imaging helps guide therapeutic decisions by providing complementary information on coronary morphology and on myocardial perfusion and metabolism. This can he done using single photon emission computed tomography (SPECT) or positron emission tomography (PET) and multidetector CT (MDCT). Advances in image-processing software and the advent of SPECT/CT and PET/CT have paved the way for the combination of image datasets from different modalities, giving rise to hybrid imaging. Three dimensional cardiac hybrid imaging helped to confirm hemodynamic significance in many lesions, add new lesions such as left main coronay artery disease, exclude equivocal defects, correct the corresponding arteries to their allocated defects and identify culprit segment. Cardiac hybrid imaging avoids the mental integration of functional and morphologic images and facilitates a comprehensive interpretation of coronaty lesions and their pathophysiologic adequacy by three dimensional display of fused images, and allows the best evaluation of myocardial territories and the coronary-artery branches that serve each territory. This integration of functional and morphological information were feasible to intuitively convincing and might facilitate development of a comprehensive non-invasive assessment of coronary artery disease.

  • PDF

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구 (A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network)

  • 김진호;김지인;장천현;송상훈
    • 한국정보처리학회논문지
    • /
    • 제5권12호
    • /
    • pp.3275-3284
    • /
    • 1998
  • 본 논문에서는 각종 단층 촬영 의료영상 장비로 촬영한 2차원 단면화상 데이터들을 차원 재구성 알고리즘을 사용하여 3차원 영상으로 재구성한 다음, 웹 서버의 데이터베이스에 저장하고 관리하며, 인터넷 가상현실 표준언어인 VRML(Virtual Reality Modeling Language)로 표현된 3차원 의료영상을 비롯한 각종 의료영상 정보를 웹브라우저를 사용하여 검색해 볼 수 있는 의료영상정보시스템(Medical Image Information System)에 관하여 기술한다. 본 연구를 통하여 개발한 의료영상정보시스템에서는 단층 촬영된 2차원 단면화상을 처리한 다음, 3차원 의료 영상을 생성하기 위하여 표면기반 랜더링 방법(Surface-based Rendering Method)을 사용하였다. 인터넷을 통하여 전송되는 영상파일의 크기를 줄이기 위하여 삼각형 매쉬(Triangle Meshes)을 이루는 다각형의 개수를 줄이는 알고리즘을 사용하며, 3차원 의료영상 데이터의 크기를 약 50%이상 줄일 수 있다. 아울러, 3차원 영상 데이터 파일을 압축을 하게 되면 파일의 크기를 80%이상 줄일 수 가 있으므로 웹상에서 신속하게 3차원 의료영상 데이터를 검색할 수 있고, 의료영상을 VRML을 사용하여 표현하므로 고성능의 그래픽 카드가 없는 일반 PC에서도 인터넷을 통하여 디스플레이 할 수 있다. 또한, CGI(Common Gateway Interface)방식을 사용하여 서버의 데이터베이스에 저장되어 있는 CT(Computerized Tomography), MRI(Magnetic Resonance Imaging), PET(Positron Emission Tomography), SPECT(Single Photon Emission Computed Tomography)등의 단층 촬영 장비로 촬영한 다양한 종류의 디지털 의료영상을 사용자에게 의료영상정보시스템을 통하여 2차원 단면화상 또는 3차원 영상으로 표현하여 보여주고, 환자에 관한 각종 정보와 진단정보 등을 신속하게 제공한다. 본 논문에서 제안하는 의료영상정보시스템은 초고속 정보통신 망을 통하여 원격의료시스템을 구축하는데 활용될 수 있을 것이다.

  • PDF

POST MRI 시대를 위한 3차원 차세대 의료영상기술 개발 (Development of Next Medical Imaging System beyond MRI)

  • 홍효봉;신성웅;박종현
    • 전자통신동향분석
    • /
    • 제29권5호
    • /
    • pp.96-104
    • /
    • 2014
  • 1895년 독일 과학자 Wilhelm Roentgen 박사가 X-ray를 발견하고 미국의 Herman Carr가 MRI(Magnetic Resonance Imaging)의 기본 원리를 개발하여 발표한 이후 전자기장을 이용한 비침습적 의료영상 이미지 시스템은 놀라운 발전을 계속하여 왔다. 하지만, X-ray, CT(Computed Tomography), PET(Positron Emission Tomography)의 경우는 방사능의 사용과 조영제의 독성이라는 문제로 인하여 안전성에 대한 계속적인 문제를 야기해왔고 상대적으로 안전성이 입증된 MRI의 경우는 장비 자체 및 운용비가 일반화되기에는 고가여서 우리나라를 포함한 선진국에서도 아주 제한적으로 운영되고 있는 실정이다. 따라서, 세계적으로도 이러한 문제를 해결하기 위하여 안전하면서도 상대적으로 저렴한 비용으로 운용이 가능한 의료영상장비를 개발하기 위하여 많은 노력들이 경주되고 있어 관련 연구동향 및 산업화 동향을 소개하고자 한다.

  • PDF

Image-guided radiation therapy in lymphoma management

  • Eng, Tony;Ha, Chul S.
    • Radiation Oncology Journal
    • /
    • 제33권3호
    • /
    • pp.161-171
    • /
    • 2015
  • Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed.

Analysis on Early Detection of Lung Cancer by PET/CT Scan

  • Wang, Huo-Qiang;Zhao, Long;Zhao, Juan;Wang, Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2215-2217
    • /
    • 2015
  • Background: This systemic analysis was conducted to to evaluate the application value of positron emission tomography/computed tomography (PET/CT) in early diagnosis of lung cancer. Methods: Clinical studies evaluating the application value of PET/CT for patients underwent PET/CT imaging. The histological diagnosis served as the standard of truth. Results: Four clinical studies which including 1330 patients with pulmonary spaceoccupying lesions were considered eligible for inclusion. Systemic analysis suggested that, in all 1330 patients, pooled sensitivity was 98.7% (1313.2/1330) and specificity was 58.2%(276.85/476). Conclusion: This systemic analysis suggests that integrated PET/CT imaging provides high sensitivity, and reasonably high specificity, and could be applied for early diagnosis of lung cancer.