• Title/Summary/Keyword: emission computed

Search Result 456, Processing Time 0.026 seconds

Intratumoral distribution of 64Cu-ATSM and 18F-FDG in VX2tumor xenografted rabbit

  • Yoo, Ran Ji;Lee, Ji Woong;Lee, Kyo Chul;An, Gwang Il;Ko, In Ok;Chung, Wee Sup;Park, Ji Ae;Kim, Kyeong Min;Choi, Yang-Kyu;Kang, Joo Hyun;Lim, Sang Moo;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • $^{64}Cu$-labeled diacetyl-bis($N^4$-methylthiosemicarbazone) is a promising agent for internal radiation therapy and imaging of hypoxic tissues. In the study, we confirmed hypoxia regions in VX2 tumor implanted rabbits with injection $^{64}Cu$-ATSM and $^{18}F$-FDG using positron emission tomography (PET)/computed tomography (CT). PET images with $^{18}F$-FDG and $^{64}Cu$-ATSM were obtained for 40 min by dynamic scan and additional delayed PET images of $^{64}Cu$-ATSM the acquired up to 48 hours. Correlation between intratumoral $O_2$ level and $^{64}Cu$-ATSM PET image was analyzed. $^{64}Cu$-ATSM and $^{18}F$-FDG were intravenously co-injected and the tumor was dissected and cut into slices for a dual-tracer autoradiographic analysis. In the PET imaging, $^{64}Cu$-ATSM in VX2 tumors displayed a specific uptake in hypoxic region for48 h. The uptake pattern of $^{64}Cu$-ATSM in VX2 tumor at 24 and 48 h did not match to the $^{18}F$-FDG. Through ROI analysis, in the early phase (dynamic scan), $^{18}F$-FDG has positive correlation with $^{64}Cu$-ATSM but late phase (24 and 48 h) of the $^{64}Cu$-ATSM showed negative correlation with $^{18}F$-FDG. High uptake of $^{64}Cu$-ATSM in hypoxic region was responded with significant decrease of oxygen pressure, which confirmed by $^{64}Cu$-ATSM PET imaging and autoradiographic analysis. In conclusion, $^{64}Cu$-ATSM can utilize for specific targeting of hypoxic region in tumor, and discrimination between necrotic- and viable hypoxic tissue.

Prognostic value of nodal SUVmax of 18F-FDG PET/CT in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy

  • Lee, So Jung;Kay, Chul-Seoung;Kim, Yeon-Sil;Son, Seok Hyun;Kim, Myungsoo;Lee, Sea-Won;Kang, Hye Jin
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.306-316
    • /
    • 2017
  • Purpose: To investigate the predictive role of maximum standardized uptake value ($SUV_{max}$) of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) in nasopharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT). Materials and Methods: Between October 2006 and April 2016, 53 patients were treated with IMRT in two institutions and their PET/CT at the time of diagnosis was reviewed. The $SUV_{max}$ of their nasopharyngeal lesions and metastatic lymph nodes (LN) was recorded. IMRT was delivered using helical tomotherapy. All patients except for one were treated with concurrent chemoradiation therapy (CCRT). Correlations between $SUV_{max}$ and patients' survival and recurrence were analyzed. Results: At a median follow-up time of 31.5 months (range, 3.4 to 98.7 months), the 3-year overall survival (OS) and disease-free survival (DFS) rates were 83.2% and 77.5%, respectively. In univariate analysis, patients with a higher nodal pre-treatment $SUV_{max}$ (${\geq}13.4$) demonstrated significantly lower 3-year OS (93.1% vs. 55.5%; p = 0.003), DFS (92.7% vs. 38.5%; p < 0.001), locoregional recurrence-free survival (100% vs. 50.5%; p < 0.001), and distant metastasis-free survival (100% vs. 69.2%; p = 0.004), respectively. In multivariate analysis, high pre-treatment nodal $SUV_{max}$ (${\geq}13.4$) was a negative prognostic factor for OS (hazard ratio [HR], 7.799; 95% confidence interval [CI], 1.506-40.397; p = 0.014) and DFS (HR, 9.392; 95% CI, 1.989-44.339; p = 0.005). Conclusions: High pre-treatment nodal $SUV_{max}$ was an independent prognosticator of survival and disease progression in nasopharyngeal carcinoma patients treated with IMRT in our cohort. Therefore, nodal $SUV_{max}$ may provide important information for identifying patients who require more aggressive treatment.

[18F]FET PET is a useful tool for treatment evaluation and prognosis prediction of anti-angiogenic drug in an orthotopic glioblastoma mouse model

  • Kim, Ok-Sun;Park, Jang Woo;Lee, Eun Sang;Yoo, Ran Ji;Kim, Won-Il;Lee, Kyo Chul;Shim, Jae Hoon;Chung, Hye Kyung
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.248-256
    • /
    • 2018
  • O-2-$^{18}F$-fluoroethyl-l-tyrosine ($[^{18}F]FET$) has been widely used for glioblastomas (GBM) in clinical practice, although evaluation of its applicability in non-clinical research is still lacking. The objective of this study was to examine the value of $[^{18}F]FET$ for treatment evaluation and prognosis prediction of anti-angiogenic drug in an orthotopic mouse model of GBM. Human U87MG cells were implanted into nude mice and then bevacizumab, a representative anti-angiogenic drug, was administered. We monitored the effect of anti-angiogenic agents using multiple imaging modalities, including bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET/CT). Among these imaging methods analyzed, only $[^{18}F]FET$ uptake showed a statistically significant decrease in the treatment group compared to the control group (P=0.02 and P=0.03 at 5 and 20 mg/kg, respectively). This indicates that $[^{18}F]FET$ PET is a sensitive method to monitor the response of GBM bearing mice to anti-angiogenic drug. Moreover, $[^{18}F]FET$ uptake was confirmed to be a significant parameter for predicting the prognosis of anti-angiogenic drug (P=0.041 and P=0.007, on Days 7 and 12, respectively, on Pearson's correlation; P=0.048 and P=0.030, on Days 7 and 12, respectively, on Cox regression analysis). However, results of BLI or MRI were not significantly associated with survival time. In conclusion, this study suggests that $[^{18}F]FET$ PET imaging is a pertinent imaging modality for sensitive monitoring and accurate prediction of treatment response to anti-angiogenic agents in an orthotopic model of GBM.

Layered Double Hydroxide Nanoparticles for Bio-Imaging Applications (LDH 나노입자 기반의 바이오 이미징 소재)

  • Jin, Wenji;Ha, Seongjin;Lee, Dongki;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.445-454
    • /
    • 2019
  • Layered double hydroxides (LDHs) nanoparticles have emerged as novel nanomaterials for bio-imaging applications due to its unique layered structure, physicochemical properties, and good biocompatibility. Bio-imaging is one of the most important fields for medical applications in clinical diagnostics and therapeutics of various diseases. Enhanced diagnostic techniques are needed to realize new paradigm for next-generation personalized medicine through nanoscale materials. When nanotechnology is introduced into bio-imaging system, nanoparticle probes can endow imaging techniques with enhanced ability to obtain information about biological system at the molecular level. In this review, we summarize structural features of LDH nanoparticles with current issues of bio-imaging system. LDH nanoparticle probes are also discussed through in vitro as well as in vivo studies in various bio-imaging techniques including fluorescence imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT), which will have the potential in the development of the advanced nanoparticles with high sensitivity and selectivity.

Comparison of Recovery Coefficients for Correction of Reduced SUV by Partial Volume Effect and Organ Movements in PET/CT Images (PET/CT 영상의 부분체적효과와 장기의 움직임으로 인해 감소된 SUV의 보정을 위한 회복계수의 비교)

  • Kim, Youngjae;Park, Hoon-Hee;Lee, Joo-Young;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • In this study, a recovery coefficient (RC) calculation was conducted that can correct the underestimation of the standardized uptake value (SUV) due to the partial volume effect (PVE) through phantom measurements and formulas. The experiment was conducted using a dynamic phantom capable of implement cranio-caudal movement at a respiratory rate of 15 times per minute along with the measured phantom experiment of the stopped state, and the RC of the moving state is calculated and compared. Ingenuity TF (Philips Healthcare, Netherland) was used as a positron emission tomography/computed tomography (PET/CT) device. PET-CT Phantom (Biodex Medical System, USA) was used as a phantom for measurement. A phantom image in a stationary state was acquired, and a moving phantom image was acquired using the AZ-733V Respiratory Phantom (Anzai Medical Co, Japan) capable of breathing movement in the cranio-caudal direction under the same acquisition parameters. For RC calculation, the sphere maximum radioactivity concentration and the background mean radioactivity concentration of the acquired images were measured, and the initially determined sphere and background radioactivity concentrations were calculated. The calculated RC was 0.08 to 0.72. The size of sphere smaller, it was confirmed that the RC reduced. And the RC in the moving state reduced than in the stationary state. As a result of this study, the change of the RC was confirmed according to the size of spheres and the phantom moving. Using the RC derived by implement movement of breathing with the respiratory phantom, it is possible to considering correction of underestimated SUV by the partial volume effect of PET images and the patient movements.

A Case of Metastatic Pancreatic Cancer Treated with FOLFIRINOX as Second-Line Chemotherapy after Gemcitabine Failure (FOLFIRINOX 병합요법을 통한 이차 항암화학요법으로 완전 관해를 획득한 진행성 췌장암 증례)

  • Jae Min Lee;Kwang Hyun Chung;Jin Myung Park;Sang Hyub Lee;Ji Kon Ryu;Yong-Tae Kim
    • Journal of Digestive Cancer Research
    • /
    • v.2 no.1
    • /
    • pp.28-31
    • /
    • 2014
  • Pancreatic cancer is a highly aggressive cancer with poor prognosis. Although, gemcitabine is the current standard regimen as first-line chemotherapy for advanced pancreatic cancer, effective regimens of second-line chemotherapy after gemcitabine failure have not been established yet. We report a case of gemcitabine refractory pancreatic cancer treated with second-line chemotherapy with FOLFIRINOX regimen. A 57-year-old-woman visited our hospital for pancreatic body mass detected by computed tomography (CT). The patient underwent distal pancreatectomy and splenectomy and the pathologic results after surgery demonstrated adenocarcinoma. Follow-up was performed after surgery and CT and positron emission tomography (PET) 4 months after surgery revealed multiple hepatic metastases. The patient underwent first-line chemotherapy with gemcitabine and erlotinib for recurred pancreatic cancer. However, CT after 7 cycles of the chemotherapy showed the progression of multiple hepatic metastases and switch to second-line chemotherapy with FOLFIRINOX was initiated. CT after 16 cycles of the FOLFIRINOX showed the complete remission of multiple hepatic metastases. The patient was admitted for infective endocarditis with septic pneumonia 17 months after the initiation of FOLFIRINOX. However, the patients died from the progression of septic embolism and acute respiratory distress syndrome.

  • PDF

Immunoglobulin G4-Related Lung Disease Mimicking Lung Cancer: Two Case Reports (폐암으로 오인된 면역글로불린 G4 연관 폐 질환: 2예에 대한 증례 보고)

  • Dae Yun Park;Su Young Kim;Suk Hyun Bae;Ji Young Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1168-1174
    • /
    • 2022
  • Immunoglobulin G4 (IgG4)-related disease is a rare systemic fibroinflammatory condition characterized by elevated serum IgG4 levels and infiltration of IgG4-positive plasma cells in various organs. IgG4-related lung disease shows varied radiologic features on chest CT. Patients usually present with a solid nodule or mass mimicking lung cancer; therefore, distinguishing between IgG4-related disease and other conditions is often challenging. Additionally, co-existing radiologic findings of IgG4-related lung disease may mimic metastasis or lymphangitic carcinomatosis of the lung. We report two cases of histopathologically confirmed IgG4-related lung disease mimicking lung cancer. Chest CT revealed a solid nodule or mass with ancillary radiologic findings, which suggested lung cancer; therefore, IgG4-related lung disease was radiologically indistinguishable from lung cancer in both cases. Measurement of serum IgG4 levels and clinical evaluation to confirm involvement of various organs may be useful to establish the differential diagnosis. However, surgical biopsy evaluation is needed for confirmation.

Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma

  • Changsoo Woo;Kwan Hyeong Jo;Beomseok Sohn;Kisung Park;Hojin Cho;Won Jun Kang;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.

Usefulness of Bone SPECT/CT for Predicting Avascular Necrosis of the Femoral Head in Children with Slipped Capital Femoral Epiphysis or Femoral Neck Fracture

  • Yoo Sung Song;Won Woo Lee;Moon Seok Park;Nak Tscheol Kim;Ki Hyuk Sung
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.264-270
    • /
    • 2022
  • Objective: This study aimed to investigate the usefulness of bone single-positron emission tomography/computed tomography (SPECT/CT) of the hip in predicting the later occurrence of avascular necrosis (AVN) after slipped capital femoral epiphysis (SCFE) or femoral neck fracture in pediatric patients. The quantitative parameters of SPECT/CT useful in predicting AVN were identified. Materials and Methods: Twenty-one (male:female, 10:11) consecutive patients aged < 18 years (mean age ± standard deviation [SD], 11.0 ± 2.7 years) who underwent surgery for SCFE or femoral neck fracture and postoperative bone SPECT/CT were included. The maximum standardized uptake value (SUV), mean SUV, and minimum SUV of the femoral head were measured. The ratios of the maximum SUV, mean SUV, and minimum SUV of the affected femoral head to the contralateral side were determined. Patients were followed up for > 1 year after the surgery. The SPECT/CT parameters were compared between patients who developed AVN and those who did not. The accuracy of SPECT/CT parameters for predicting AVN was assessed. Results: Six patients developed AVN. There was a significant difference in the ratio of the mean SUV among patients who developed AVN (mean ± SD, 0.8 ± 0.3) and those who did not (1.1 ± 0.2, p = 0.018). However, there were no significant differences in the ratios of the maximum and minimum SUV between the groups (all p = 0.205). For the maximum, mean, and minimum SUVs, no significant differences were observed between the groups (p = 0.519, 0.733, and 0.470, respectively). The cutoff mean SUV ratio of 0.87 yielded a 66.7% sensitivity and 93.2% specificity for predicting AVN. Conclusion: Quantitative bone SPECT/CT is useful for evaluating femoral head viability in pediatric patients with SCFE or femoral neck fractures. Clinicians should consider the high possibility of later AVN development in patients with a decreased mean SUV ratio.

The Prognostic Value of 18F-Fluorodeoxyglucose PET/CT in the Initial Assessment of Primary Tracheal Malignant Tumor: A Retrospective Study

  • Dan Shao;Qiang Gao;You Cheng;Dong-Yang Du;Si-Yun Wang;Shu-Xia Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.425-434
    • /
    • 2021
  • Objective: To investigate the potential value of 18F-fluorodeoxyglucose (FDG) PET/CT in predicting the survival of patients with primary tracheal malignant tumors. Materials and Methods: An analysis of FDG PET/CT findings in 37 primary tracheal malignant tumor patients with a median follow-up period of 43.2 months (range, 10.8-143.2 months) was performed. Cox proportional hazards regression analyses were used to assess the associations between quantitative 18F-FDG PET/CT parameters, other clinic-pathological factors, and overall survival (OS). A risk prognosis model was established according to the independent prognostic factors identified on multivariate analysis. A survival curve determined by the Kaplan-Meier method was used to assess whether the prognosis prediction model could effectively stratify patients with different risks factors. Results: The median survival time of the 37 patients with tracheal tumors was 38.0 months, with a 95% confidence interval of 10.8 to 65.2 months. The 3-year, 5-year and 10-year survival rate were 54.1%, 43.2%, and 16.2%, respectively. The metabolic tumor volume (MTV), total lesion glycolysis (TLG), maximum standardized uptake value, age, pathological type, extension categories, and lymph node stage were included in multivariate analyses. Multivariate analysis showed MTV (p = 0.011), TLG (p = 0.020), pathological type (p = 0.037), and extension categories (p = 0.038) were independent prognostic factors for OS. Additionally, assessment of the survival curve using the Kaplan-Meier method showed that our prognosis prediction model can effectively stratify patients with different risks factors (p < 0.001). Conclusion: This study shows that 18F-FDG PET/CT can predict the survival of patients with primary tracheal malignant tumors. Patients with an MTV > 5.19, a TLG > 16.94 on PET/CT scans, squamous cell carcinoma, and non-E1 were more likely to have a reduced OS.