• 제목/요약/키워드: embryos transfer donor

검색결과 200건 처리시간 0.028초

토기에서 공핵란의 발달단계가 할구주입, 전기융합 및 핵이식 수정란의 체외발달에 미치는 영향 (Influence of Cell Stage of Donor Nucleus on Nuclear Injection, Electrofusion and In Vitro Development in Nuclear Transplant Rabbit Embryos)

  • 박충생;전병균;이효종;최철민;최상용
    • 한국수정란이식학회지
    • /
    • 제9권2호
    • /
    • pp.153-160
    • /
    • 1994
  • This study evaluated the influence of cell stage of donor nucleus on nuclear injection, electrofusion and in vitro development in the rabbit to improve the efficiency of nuclear transplantation in the rabbit. The embryos of 8-, 16- and 32-cell stage were collected from the mated does by flushing viducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FGS) at 44, 54 and 60 hours after hCG injection. The blastorneres separated from these embryos were used as donor nucleus. The ovulated oocytes collected at 14 hours after hCG injection were used as recipient cytoplasm following removing the nucleus and the first polar body. The separated blastomeres were injected into the enucleated oocytes by micromanipulation and were electrofused in 0.28 M mannitol solution at 1.5 kV /cm, 60 $\mu$sec for three times. The fused oocytes were cocultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FGS for 72~120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The cultured nuclear transplant embryos were stained with Hoechst 33342 solution and the number of cells were counted by fluorescence microscopy. The successful injection rate of 8-, 16- and 32-cell-stageblastomeres into enucleated oocytes was 86.7, 91.0 and 93.9%, respectively. The electrofusion rate of 8-, 16- and 32-cell-stage blastomeres with enucleated oocytes was 93.3,89.3 and 79.0%, respectively. Development of blastomeres to blastocyst was similar with 8-,16- and 32-cell-stage donor nuclei(26.2, 25.8 and 26.6%, respectively, P<0.05). The mean number of cell cycle per day during in vitro culture in nuclear transplant embryos which received 8-, 16- and 32-cell- stage nuclei was 1.87, 1.81 and 1.43, respectively.

  • PDF

인간 Prourokinase가 도입된 체세포를 이용한 소 형질전환 복제란 생산: 표지유전자 발현정도에 따른 효과 (Production of Bovine Transgenic Cloned Embryos using Prourokinase-Transfected Somatic Cells: Effect of Expression Level of Reporter Gene)

  • J. K. Cho;M.M.U. Bhuiyan;G. Jang;G. Jang;Park, E. S.;S. K. Kang;Lee, B. C.;W. S. Hwang
    • 한국수정란이식학회지
    • /
    • 제17권2호
    • /
    • pp.101-108
    • /
    • 2002
  • Human Prourokinase (proUK) offers potential as a novel agent with improved fibrin specificity and, as such, may offer advantages as an attractive alternative to urokinase that is associated with clinical benefits in patients with acute peripheral arterial occlusion. For production of transgenic cow as human proUK bioreacotor, we conducted this study to establish efficient production system for bovine transgenic embryos by somatic cell nuclear transfer (NT) using human prourokinase gene transfected donor cell. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and human prourokinase target gene into a pcDNA3 plasmid. Cumulus cells were used as donor cell and transfected with the expression plasmid using the Fugene 6 as a carrier. To increase the efficiency for the production of transgenic NT, development rates were compared between non-transfected and transfected cell in experiment 1, and in experiment 2, development rates were compared according to level of GFP expression in donor cells. In experiment 1, development rates of non-transgenic NT embryos were significantly higher than transgenic NT embryos (43.3 vs. 28.4%). In experiment 2, there were no significant differences in fusion rates (85.4 vs. 78.9%) and cleavage rates (78.7 vs. 84.4%) between low and high expressed cells. However, development rates to blastocyst were higher in low expressed cells (17.0 vs. 33.3%), and GFP expression rates in blastocyst were higher in high expressed cells (75.0 vs. 43.3%), significantly.

초기 발생에 있어서 복제수정란의 리프로그래밍 (Reprogramming of Cloned Embryos During Early Embryogenesis)

  • Han, Yong-Mahn;Kang, Yong-Kook;Koo, Deog-Bon;Lee, Kyung-Kwang
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2002년도 제42차 춘계학술대회
    • /
    • pp.11-17
    • /
    • 2002
  • Animal clones derived from somatic cells have been successfully produced in a variety of mammalian species such as sheep, cattle, mice, goats, pigs, cat and rabbits. However, there are still many unsolved problems in the present cloning technology. Somatic cell nuclear transfer has shown several developmental aberrancies including high rate of abortion in early gestation and increased perinatal death. These developmental failures of cloned embryos may arise from abnormal reprogramming of donor genome and/or incomplete cloning procedure. We have found that overall genomic methylation status of cloned bovine embryos is quite different from that of normal embryos in various genomic regions, suggesting that the developmental failures of cloned embryos may be due to incomplete reprogramming of donor genomic DNA. Many of the advances in understanding the molecular events for reprogramming of donor genome will more clarify the developmental defects of cloned embryos.

  • PDF

수핵란 세포질의 세포주기 조절에 의한 소 체외수정란의 핵이식 (Nuclear Transplantation of Bovine IVF Embryos by Cell Cycle Control of Recipient Cytoplasm)

  • 정희태;임석기;박춘근;양부근;김정익
    • 한국가축번식학회지
    • /
    • 제20권3호
    • /
    • pp.307-313
    • /
    • 1996
  • This study was conducted to investigate the effect of S-phase synthronized nuclear transfer on the development of nuclear transplant bovine embryos. A blastomere derived from the 16~32 cell stage bovine embryos was transferred into an enucleated metaphase II(MII) oocytes or activated S-phase eggs. From the MII-phase and S-phase nuclear transfer, 6.3%(4/63) and 13.8%(9/65) of nuclear transplant embryos developed to the blastocyst stage, respectively. In the S-phase nuclear transfer, maximal proportion of embryos developed to the blastocyst stage(16.6%) was obtained after the recipient cell was activated 8 h prior to receving a donor nucleus. MII-phase nuclear transplant embryos showed the PCC state of their nuclear at 1.5~2 h after fusion, whereas, S-phase nuclear transplant embryos did not undergo PCC. The result of this study suggests that if blastomeres of unknown cell-cycle-stage are used, S-phase nuclear transplantation through the activation of enucleated oocytes prior to fusion enhances development of nuclear transplant embryos. This result also suggests that the interval time from oocyte activation to cell fusion may affect the development of nuclear transplant embryos.

  • PDF

핵이식 수정란의 동결, 융해 및 이식에 의한 클론동물의 생산 II (Production of cloning animals by fresh and frozen-thawed nuclear transfer embryos II)

  • 황우석;조충호;이창우;이병천
    • 대한수의학회지
    • /
    • 제33권3호
    • /
    • pp.547-554
    • /
    • 1993
  • This study was carried out to investigate the best condition for in vitro and in vivo culture after freezing and thawing of nuclear transplant 2 cell embryos. When nuclear transplant embryos were submitted to electrofusion, the significantly higher fusion rates of 2 cell donor nuclei were achieved at the electric field strength of DC 1.5 kV/cm for 100 and $150{\mu}sec$, DC 2.0 kV/cm for 100 and $150{\mu}sec$ than DC 1.0 kV/cm for 100 and $150{\mu}sec$(p<0.01). The significantly higher fusion rates of 4 cell donor nuclei were achievecl at DC 2.0 kV/cm for 100 and $150{\mu}sec$ than DC 1.0 kV/cm for 100 and $150{\mu}sec$(p<0.01). The fusion rates in 8 cell donor nuclei were 94.2~99.3%. The developmental potency to blastocyst in 2 cell donor nuclei was significantly higher in DC 2.0 kV/cm for $150{\mu}sec$ treated group(p<0.01). The significantly higher developmental potency to blastocyst in 4 cell donor nuclei were achieved at the electric field strength of DC 2.0 kV/cm for $150{\mu}sec$ than DC 1.5 kV/cm for 100 and $150{\mu}sec$, DC 2.0 kV/cm for $100{\mu}sec$ treated group(p<0.01). The develop mental potency to blastocyst in 8 cell donor nuclei was significantly higher in DC 2.0 kV/cm for $100{\mu}sec$ treated group(p<0.01). The developmental potency to blastocyst after nuclear transplantation was significantly higher in 2 cell donor nuclei than in 8 cell donor nuclei(p<0.01). When the recovered embryos in normal morphology were cultured in vitro, there were no significant differences in the developmental potency to blastocyst between the freezing methods and the concentrations of cryoprotectant(p<0.01). The production rates of offspring after transfer of nuclear transplant embryos to recipient mouse were no significant difference in 2, 4 and 8 cell donor nuclei.

  • PDF

In vitro Development of Interspecies Somatic Cell Nuclear Transfer Embryos Derived from Murine Embryonic Fibroblasts and Bovine Oocytes

  • Yun, J.I.;Koo, B.S.;Yun, S.W.;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1665-1672
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a useful method to preserve endangered species and to study the reprogramming event of a nuclear donor cell by the oocyte. Although several studies of iSCNT using murine cells and bovine oocytes have been reported, the development of murine-bovine iSCNT embryos beyond the 8-cell stage has not been successful. In this paper, we examined the developmental potential of embryos reconstructed with a murine embryonic fibroblast as the nuclear donor and a bovine oocyte as the cytoplasm recipient. The reconstructed embryos were cultured in CZB (murine medium) or CR1aa (bovine medium). In addition, for the development of a murine-bovine iSCNT blastocyst, the antioxidant ${\beta}$-mercaptoethanol (${\beta}ME$) was supplemented to CR1aa medium. Furthermore, to verify the mouse genome activation in murine-bovine iSCNT embryos, RT-PCR analysis of murine Xist was performed. The development of the murine-bovine iSCNT embryos cultured in CR1aa was significantly higher than that in CZB (p<0.05). With respect to the effect of BME on the development of the murine-bovine iSCNT blastocyst, addition of BME produced a significant increase in blastocyst development (p<0.05). Karyotype analysis confirmed that the reconstructed embryos were derived from murine cells (40XX). The Xist gene was gradually increased from the 8-cell stage to the blastocyst stage. This is the first report of blastocyst development of iSCNT embryos derived from murine somatic cells and bovine oocytes. These results demonstrate that bovine cytoplasm can support the development of later stages of a preimplantation embryo from murine-bovine iSCNT.

Effects of Bovine Somatotropin (bST) Administration Combined with Controlled Internal Drug Release (CIDR) on Embryo Quality and Pregnancy of Hanwoo (Korean Native Beef Cattle) during Commercial Embryo Transfer Program

  • Lee, Ho-Jun;Hwang, Seongsoo;Yoon, Jong-Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.194-199
    • /
    • 2007
  • Effects of recombinant bovine somatotropin (bST) on plasma hormonal concentration, embryo quality, and pregnancy rate were examined during the superovulation and synchronization treatment in donor and recipient cows. Hanwoos (Korean native beef cattle) were treated with controlled internal drug release (CIDR) combined with bST (CIDR+bST) or without bST (CIDR) as donor cows. The embryos recovered from donors were transferred into Holstein recipient heifers treated with bST (CIDR+bST) or without bST (CIDR) for synchronization. The correlation between IGF-I and P4 showed a positive pattern in the CIDR+bST group (r=0.44, p<0.01), but a negative pattern was shown in the CIDR group (r = -0.59, p<0.02) at day 7 of estrous cycles. Although the number of recovered, transferable, and degenerated embryos was not different, quantities of grade 1 (excellent) embryos in CIDR+bST group were significantly higher than those of the CIDR group (p<0.01). The pregnancy rate was higher in the CIDR+bST recipient group compared to CIDR group (p<0.05), when the embryos were recovered from the donors treated with CIDR. However, the pregnancy was maintained highly in both recipient groups, when the embryos were produced by CIDR+bST treated donors. It can be concluded that bST administration combined with CIDR is an effective method for superovulation and synchronization treatment to stabilize plasma hormonal levels, to obtain excellent quality of embryos, and to get higher pregnancy rate.

핵이식을 이용한 복제송아지 생산에 관한 연구 II. 효율적인 복제수정란 생산을 위한 난자의 활성화, 공여핵의 세포주기조절 및 적정 배양조건 (Studies on the cloning of calves by nuclear transplantation II. Efficient embryo cloning under oocyte activation, cell cycle regulation of donor nuclei and optimal culture conditions)

  • 황우석;노상호;이병천
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.639-645
    • /
    • 1997
  • The objectives of the present study were improvements in the efficiency of developmental rates to morula and blastocyst stages to produce a large number of genetically identical nuclear transplanted embryos. The oocytes collected from slaughterhouse ovaries were matured 24h in TCM199+10% FBS and exposed to $39^{\circ}C$ or room temperature to allow cytoplasmic maturation and gain activation competence. Donor embryos were treated for 12h with $10{\mu}g/ml$ nocodazole or $0.05{\mu}g/ml$ demicolcine to synchronize the cell cycle stage at 26h after the onset of culture. The blastomeres and recipient oocytes were fused by electrofusion. The cloned embryos were then cultured in various conditions to allow further development. In the treatment of oocyte activation and cell cycle regulation of donor nuclei, the room temperature exposure and nocodazole treatment group had significant effect on the developmental rates to morula/blastocyst(21.7% vs 12.1~16.7%), but had no significant effect on the fusion rates between donor blastomeres and recipient oocytes. The developmental rates of bovine nuclear transplanted embryos appeared to be higher significantly in mTALP medium under 5% $O_2$ condition and in TCM199 with bovine oviduct epithelial cell under 20% $O_2$ condition(22.2%) than other groups. In embryo transfer of nuclear transplanted embryos, there were no significant differences in calving rates between the use of excellent and good grade donor embryos.

  • PDF

한우 수정란의 동결보존 및 쌍자생산에 관한 연구 I. 동결 수정란의 이식과 자우 생산 (Studies on Embryo Cryopreservation and Twinning by Embryo Transfer of Korean Native Cattle I. Transfer of Frozen-thawed Embryos and Production of Calves)

  • 손동수;김일화;이호준;서국현;이동원;류일선;이광선;전기준;손삼규
    • 한국수정란이식학회지
    • /
    • 제12권1호
    • /
    • pp.75-90
    • /
    • 1997
  • This study was carried out to establish the techniques for producing the calves of genetically superior Korean Native cattle by transfer of frozen-thawed embryos. The effects of some factors related to embryo recovery following superovulation and pregnancy rate following transfer of frozen-thawed embryos were evaluated. Also calving state was investigated. The results obtained were as follows ; The mean number of total and transferrable embryos recovered per superovulated cow was 8.72 and 4.90, respectively, from a total of 72 superovulations using 34 donor cows. There were no significant differences in the number of total or transferrable embryos recovered per superovulated cow between products of follicle stimulating hormone (FSH), years, seasons, and collection numbers. The pregnancy rate was found 44.44% following transfer of frozen-thawed embryos of Korean Native cattle to a total of 180 recipient cows including 82 Angus, 27 Charolais, 62 Hereford and 9 Korean Native cows. The pregnancy rate was significantly (P<0.05) higher in the transfer of excellent (42.99) and good embryos (40.17%), compared with fair (5.90%) grade embryos. And the pregnancy rate was significantly (P<0.05) higher in the transfer of embryos of morula stage (43.86%) than blastocyst stage (15.51%). But there were no significant differences in pregnancy rates between natural and induced estrus estrus asynchrony of 1 days, breeds, and parities of recipient cows. The normal calving rate of 80 pregnant cows following transfer of frozen4hawed em-bryos was 87.5% and the other 10 pregnant cows showed abortion during the period from pregnancy diagnosis at 50~60 days to calving. The average gestation length of normally delivered recipients was 288.50 days and the average birth weight of 70 calves born was 24.22 kg. The gestation length was significantly (P<0.05) shorter in the recipients delivering female calves (286.70 days) than males (289.39 days). But there were no significant differences in gestation tength and birth weight of calves born between the recipient breeds.

  • PDF

Effect of OPU Session Periods on the Efficiency of In Vitro Embryo Production in Elite Korean Native Cow

  • Choi, Byung-Hyun;Song, Seok-Hwan;Park, Bun-Young;Kong, Rami;Son, Mi-Ju;park, Chan-Sang;Shin, Nyeon-Hak;Cheon, Hye-Young;Lee, Sung-Hoon;Jin, Jong-In;Lee, Jung-Gyu;Kong, Il-Keun
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.265-270
    • /
    • 2018
  • Up-to-date artificial insemination (AI) using frozen sperm consider as the most widely using technology for improvement of Korean Native Cow (Hanwoo) embryo production. However, it is time consuming, required at least 15~20 years to make more than 6 generations, and their offspring number is limited. To overcome such limitations, superovulation and in vitro fertilization have been developed. For superovulation, the number of produced embryos are not enough for commercialization and donor cows need rest period. This led to use of slaughterhouse ovary for in vitro fertilization, but it is impossible to repeat the collection from the same individual and it only can improve the genetic merits of offspring for one generation. Production of embryos using Ovum Pick-Up (OPU) technique, where oocytes can be repeatedly collected from living elite donor, might overcome these limitations. In this study, we investigated the possibility of using OPU technique from donors at different age and different session periods for mass-embryo-production. Oocytes were collected from 26 donor cows twice per week, 3 - 4 months per year, between 2013 and 2016. Results showed that, the average number of embryo produced in first year used donor was significantly higher than that in second year used donor ($3.89{\pm}2.85$ vs $3.29{\pm}2.70$), however, there was no significant difference between third year used donor ($3.51{\pm}3.32$) and other groups. Taken together, our data showed that repeated using of donor up to three years is possible for in vitro embryo mass-production. Moreover, OPU can be used as suitable embryo producing technique for livestock breed improvement.