• Title/Summary/Keyword: embryos transfer donor

Search Result 200, Processing Time 0.03 seconds

Efficiency of In Vivo Embryo Production following Superovulation with Sex-soted Semen in Hanwoo (Korean Native Cattle) (과배란 처리에 있어 성감별 정액을 이용한 한우 체내 수정란의 생산 효율)

  • Jeon, Hyang-A;Yeom, Gyu-Tae;Park, Hae-Geum;Kim, Sung-Woo;Kim, Hyun;Kim, Young Sin;Seong, Hwan-Hoo;Cho, Young Moo;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.29 no.3
    • /
    • pp.283-287
    • /
    • 2014
  • Sexed semen is commonly used for the production of calves of the desired gender. Gender selection is important in animal production industries. For example, female cattle are required for the dairy industry while males are preferred in the beef cattle industry. The present study was to assess the in vivo embryo production efficiency using the semen separated according to sex during superovulation in Hanwoo. Seventy Hanwoo donor cows were flushed on day 7 of estrus cycle with same FSH and artificial insemination by the same technicians. Embryos were recovered on 7 days after the third insemination by flushing the uterus with embryo collection medium. KPN semen straws used artificial insemination contained 20 million sperm (total number 60 million per donor). Sex-sorted semen straws contained 4 million sperm (total number 12 million per donor). The results obtained were as follows: No differences were observed in the efficiency of superovulation rates on KPN semen 87%, and sexed semen 100%, respectively. The mean numbers of total embryos are each $12.58{\pm}8.31$ and $13.25{\pm}7.86$. The mean numbers of transferable embryos, sexed semen were significantly lower than KPN semen ($3.75{\pm}1.98$ vs. $8.23{\pm}6.07$, P<0.05). The rates of unfertilized embryos from superovulation using sexed semen were significantly higher than KPN semen (50% vs. 15%, P<0.05). The rate of degenerated 2-cell embryos from sexed and KPN semen was 60.87% and 11.11%, respectively (p<0.05). In conclusion, these results indicate that superovulation using sexed semen was useful, but efficient embryo production was important to reducing the damage caused by the Flowcytometer-based sperm sorting procedure.

Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells (외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성)

  • Fujihara, N.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

Efficiency of Female-Derived Donor Cells on High Postnatal Survival in Pig Cloning

  • Cho, Seong-Keun;Park, Mi-Rung;Kwon, Deug-Nam;Hwang, Kyu-Chan;Lee, Eun-Kyeong;Son, Woo-Jin;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.217-217
    • /
    • 2004
  • The present study was conducted to investigate the developmental competency between male- and female-somatic cell derived nuclear-transferred porcine embryos, and the productive and survival efficiency of cloned male and female piglets. The potential of eggs receiving somatic cells to develop into blastocysts was not different among donor cells of different origins. (omitted)

  • PDF

Effect of Media, Synchronization of Fibroblast Cells, Culture Time, $\textrm{O}_2$ Concentration and Activation on Developmental Rate of Nuclear Transferred Porcine Oocytes (배양액, 섬유아세포, 배양시간, 산소 농도 및 활성화 처리가 돼지 핵이식 배의 체외발달에 미치는 영향)

  • Quan J. H.;Rhee M. H.;Kim S. K.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2004
  • This study was conducted to examine in vitro development of porcine embryos constructed by the microinjection of cultured fetal fibroblast cells into porcine oocytes matured in vitro. Single fetal donor cells were deposited into the perivitelline space of enucleated oocytes, followed by electrical fusion and activation. Activated embryos were cultured in NCSU-23 medium supplemented with 5% FBS, at 38.5$^{\circ}C$ for 6 to 8 days in 5% $CO_2$ and air. In experiment 1, fusion rates of nuclear transfer embryos did not differ for fetal fibroblast cells incubated in 5% FBS + NCSU-23 or 5% FBS + TL Heaps medium, nor did fusion rates of donor cells differ between 1-8 hr incubation durations. Fusion rates for the four treatment subclasses ranged from 72.1% to 78.0%. In experiment 2, Pre-synchronization in medium containing 0.1 $\mu\textrm{g}$/m Hoechst 33342 an increase from 0 and 8 versus 15 h culture an increased percentage of porcine fibroblast cells in G2/M at the end of the synchronization period (12.4%, 17.5% and 47.6%). Neither an increase in the concentration of H 33342 (0.2-1.6 $\mu\textrm{g}$/$m\ell$) nor a longer exposure time (12h, 18h and 24h) increased the proportion of porcine G2/M fibroblasts. In experiment 3, fusion rates did not differ significantly far nuclear transfer embryos constructed using donor cells cultured in 5% FBS + NCSU-23 medium for 1-2, 6-8 or 12-14 days (60.0%, 73.3% and 62.5%), respectively. The cleavage rate for nuclear transplant embryos using fetal fibroblast cells cultured for 1-2 days was 44.0%, significantly less than 56.7% and 50.0%. for 6-8 or 12-14 days duration of culture, respectively. In experiment 4, the proportions of nuclear transfer embryos that developed to the $\geq$2 cell and to the blastocyst stage were not affected significantly by culture medium (5% FBS + NCSU-23 or 5% FBS + TL-Heaps) or by $O_2$ concentration of the culture (5% vs 10%). Rates of development to the $\geq$2 cell stage ranged from 65.9% to 70.1%, and development rates to the blastocyst stage ranged from 9.8% to 12.5% for the four treatment subclasses. Developmental rate was highest for embryos cultured in 5% FBS + NCSU-23 under a gas atmosphere of 5% $O_2$ in air.

Industrial Application of Embryo Transfer in Korea (수정란이식의 산업화 방안)

  • 정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.7 no.2
    • /
    • pp.41-52
    • /
    • 1983
  • Animal in dustry in Korea urgently needs the domestic introduction and the industrial a, pp.ication of embryo transfer technique. Namely, this technique can be utilized effectively, as means of the improvement of livestocks, as means of the increase of meat production, as means of substitute for the livestock import, and dissemination of new breed. However, as this technique avaliable in our country is remaining initial stage, we can not make use of the technique industrially unless we make much improvement as follows; induction of superovulation, non-surgical recovery of embryos, synchronization between the estrus such cycles of donor and recipient, non-surgical transfer of embryos, etc. Simultaneously, the basic studies such as harvesting oocytes from ovary, in vitro culture of oocytes, in vitro capacitation of spermatozoa, cloning by culture of blastomeres and transfer of nuclei, sexing embryo, etc. should not be neglected in order to make the technique of embryo transfer more simple and convenient. For the success of these studies, universities, national and public institutes, large scale cattle farms, and small scale cattle farms should cooperate each other. For instance, universities undertake basic researches, and the national and public institutes a, pp.y the results of the researches to animal industry along with cooperation by large scale cattle farms. By the help of the cooperative organizations, the technique relevant to our environment and farm condition may be able to be finalized, and to be a, pp.ied to samll scale cattle farm. Consequently, being served to stimulate animal productivity, this technique can be contributed to the development of livestock industry in Korea.

  • PDF

Donor Cell Source (Miniature Pig and Landrace Pig) Affects Apoptosis and Imprinting Gene Expression in Porcine Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study investigated the developmental ability and gene expression of somatic cell nuclear transfer embryos using ear skin fibroblast cells derived from miniature pig. When miniature pig (m) and landrace pig (p) were used as donor cells, there were no differences in cleavage (79.2 vs. 78.2%) and blastocyst rates (27.4 vs. 29.7%). However, mNT blastocysts showed significantly higher apoptosis rate than that of pNT blastocysts (6.1 vs. 1.7%) (p<0.05). The number of nuclei in pNT blastosysts was significantly higher than that of mNT (35.8 vs. 29.3) (p<0.05). Blastocysts were analyzed using Realtime RT-PCR to determine the expression of Bax-${\alpha}$, Bcl-xl, H19, IGF2, IGF2r and Xist. Bax-${\alpha}$ was higher in mNT blastocyst than pNT blastocyst (p<0.05). There was no difference in Bcl-xl between two NT groups. Bax-${\alpha}$/Bcl-xl was, however, significantly higher in mNT blastocyst compared to pNT. The expression of imprinting genes were aberrant in blastocysts derived from NT compared to in vivo blastocysts. H19 and IGF2r were significantly lower in mNT blastocysts (p<0.05). The expression of IGF2 and Xist was similar in two NT groups. However, imprinting genes were expressed aberrantly in mNT compared to pNT blastocysts. The present results suggest that the NT between donor cells derived from miniature pig and recipient oocytes derived from crossbred pig might affect reprogramming of donor cell, resulting in high apoptosis and aberrant expression patterns of imprinting genes.

Effects of Parity and Season on Production of Embryos in Superovulated Hanwoo (과배란 처리된 한우의 수정란 생산에 미치는 산차와 계절의 효과)

  • Song, Sang-Hyun;Jang, Duk-II;Min, Chan-Sik;Park, Jyun-Kyu;Joo, Young-Kuk;Lee, Jyung-Gyu;Chung, Ki-Hwa
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2012
  • This study was performed to investigate the effects of parity and season on the embryo production in superovulated Hanwoo cows. Superovulation was performed from 1 to 8 times by repeated superovulation treatment of Hanwoo cows (n = 22). Irrespective of estrous cycle, donor cows were received a CIDR, progesterone (50 mg) and estradiol benzoate (2.5 mg). After 4.5 days, the donor cows were superovulated with total 28AU FSH (Antorin R-10) administrated twice daily in a decreasing dose for 4 days. On $6^{th}$ and $7^{th}$ of FSH injection, 2.5 mg and 15 mg $PGF_2{\alpha}$ were injected i.m, respectively. CIDR was removed at the $7^{th}$ FSH injection. The donor cows received $200{\mu}g$GnRH at 48 hrs after $1^{st}$ $PGF_2{\alpha}$ injection. The donor cows were artificially inseminated three times after estrous detection at 12 hr intervals and embryos were recovered 7 days after estrous detection. The mean number of total ova, transferrable embryos, degenerated embryos and unfertilized oocytes were $11.6{\pm}7.9$, $5.5{\pm}4.4$, $3.0{\pm}3.3$ and $2.6{\pm}4.1$ per donor cows, respectively. A higher number of total ova were recovered in parity 3~5 ($14.3{\pm}1.3$) than 1~2 ($8.9{\pm}1.9$, P<0.05). The number of recovered normal embryos is significantly higher in parity 3~5 ($7.3{\pm}0.8$) than that of over 6 ($3.7{\pm}1.5$). Significantly higher number of total ova and normal embryos were recovered in summer ($16.4{\pm}2.3$, $8.1{\pm}1.4$) than in autumn ($10.1{\pm}1.8$, $4.5{\pm}1.1$) and winter ($6.3{\pm}1.8$, $3.3{\pm}1.1$), respectively (P<0.05). Transferable embryos were significantly higher in summer ($7.6{\pm}1.3$) than in winter ($3.0{\pm}1.0$, P< 0.05). The results were showed that parity and season affecting on the production of embryos in superovulated Hanwoo.

Effect of Ovum Pick-up Frequency on In Vitro Production of Embryos in Hanwoo Cattle (한우에 있어서 초음파기기를 이용한 생체내 개체별 난자 채취 빈도 및 수정란 생산효율에 관한 연구)

  • 박성재;양보석;임기순;성환후;양병철;장원경;정일정;정기화;심보웅
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The ultrasound-guided oocytes cllection (ovum pick-up ; OPU) has become a substitution for superovlation in cattle. The objective of this study was to examine the effect of OPU frequency on the in vitro production of embryos in Hanwoo cattle. Six cycling Hanwoo cows were distributed into two groups for either once or twice weekly OPU sessions. Oocytes were collected by ultrasound-guided follicle aspiration(SA600) using a 6.5HMz transducer and attached with 18 gauge needle, with vacuum pressure of 40 mmHg. The cumulus-oocyte complexes (COCs) collected from each donor were matured in TCM 199 supplemented with 10% fetal bovine serum at 5% CO2 in air at 38.5$^{\circ}C$ for 22h and in vitro matured oocytes were co-incubated with sperm(separated by Percoll gradient) for 6h. The zygotes were co-cultured on cumulus cell monolayer in 10ul droplets in the same culture medium and conditions used for IVM for 7 days. On Day 7 of culture, development to blastocysts was examined. Although the number of oocytes collected was variable depending on individuals, overall embryo production in the twice per week OPU sessions was better that in the once per week sessions(6~21 vs 2~7 blastocysts produced, respectively). Two cows(E, A) were good oocyte donors and embryo production was superior in cow C ; however, cow F was a poor donor as compared to the others. In conclusion, these results suggest that for embryo production, twice weekly OPU sessions were better than once per week for producing embryos in vitro from Hanwoo cattle.

  • PDF

Methylation Status of H19 Gene in Embryos Produced by Nuclear Transfer of Spermatogonial Stem Cells in Pig

  • Lee, Hyun-Seung;Lee, Sung-Ho;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The faulty regulation of imprinting gene lead to the abnormal development of reconstructed embryo after nuclear transfer. However, the correlation between the imprinting status of donor cell and preimplantation stage of embryo development is not yet clear. In this study, to determine this correlation, we used the porcine spermatogonial stem cell (pSSC) and fetal fibroblast (pFF) as donor cells. As the results, the isolated cells with laminin matrix selection strongly expressed the GFR ${\alpha}$-1 and PLZF genes of SSCs specific markers. The pSSCs were maintained to 12 passages and positive for the pluripotent marker including OCT4, SSEA1 and NANOG. The methylation analysis of H19 DMR of pSSCs revealed that the zinc finger protein binding sites CTCF3 of H19 DMRs displayed an androgenic imprinting pattern (92.7%). Also, to investigate the reprogramming potential of pSSCs as donor cell, we compared the development rate and methylation status of H19 gene between the reconstructed embryos from pFF and pSSC. This result showed no significant differences of the development rate between the pFFs ($11.2{\pm}0.8%$) and SSCs ($13.3{\pm}1.1%$). However, interestingly, while the CTCF3 methylation status of pFF-NT blastocyst was decreased (36.3%), and the CTCF3 methylation status of pSSC-NT blastocyst was maintained. Therefore, this result suggested that the genomic imprinting status of pSSCs is more effective than that of normal somatic cells for the normal development because the maintenance of imprinting pattern is very important in early embryo stage.

Timed Artificial Insemination or Embryo Transfer using CIDR, Estradiol Benzoate and Prostaglandin $F_{2{\alpha}}$ for the Rebreeding of Korean Native Donor Cattle

  • Son, Dong-Soo;Choe, Chang-Yong;Cho, Sang-Rae;Choi, Sun-Ho;Kim, Hyun-Jong;Lee, Je-In;Kim, Ill-Hwa
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • This study compared the pregnancy rates of Korean native donor cattle after either a timed artificial insemination (TAI) or embryo transfer (TET) following the synchronization of ovulation using a controlled internal drug release (CIDR) device together with estradiol benzoate (EB) and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$). Fifty five cows and 8 heifers which had been previously used for embryo production were assigned to two treatments: (1) Thirty-two cattle received a CIDR device and 2 mg EB (Day 0), 25 mg $PGF_{2{\alpha}}$ injection at the time of CIDR removal on Day 7, and 1 mg EB injection on Day 8. All of the cattle received a TAI 30 h (Day 9) after the second EB injection (TAI group). (2) Thirty-one cattle received the same hormonal treatments as in the TAI group. The cattle with corpus luteum (CL) received a TET on Day 16 using frozen-thawed embryos (TET group). Ultrasonographic observations demonstrated that the proportion of cattle with synchronized ovulation on Day 10 and the concomitant formation of new CL on Day 13 did not differ between groups (p>0.05); the overall mean rates were 65.1 and 73.0%, respectively. The conception and pregnancy rates did not differ (p>0.05) between the TAI (12.5% and 12.5%) and TET groups (13.0% and 9.7%), respectively. We conclude that the pregnancy rate following TAI or TET in Korean native donor cattle was poor, which might be due in part to a poor synchrony of ovulation and concomitant CL formation.