• Title/Summary/Keyword: embossing

Search Result 223, Processing Time 0.029 seconds

Development of Satisfaction Models for Passenger Car Interior Materials Considering Statistical, Technical, and Practical Aspects of Design Variables (설계변수의 통계적.기술적.실질적 측면을 고려한 자동차 내장재질의 만족도 모형 개발)

  • You, Hee-Cheon;Ryu, Tae-Beum;Oh, Kyung-Hee;Yun, Myung-Hwan;Kim, Kwang-Jae
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.482-489
    • /
    • 2004
  • As the functional characteristics of passenger cars have reached to a satisfactory level, customers place more concerns with the aesthetic aspects of interior designs. The present study developed satisfaction models of passenger car interior materials for six parts including crash pad, steering wheel, transmission gearshift knob, audio panel, metal grain, and wooden grain. Eight to fifteen material design variables such as color, embossing, and smoothness were defined for the six interior parts based on literature survey, customer reviews, and expert opinions. A satisfaction survey was conducted for 30 vehicles with 30 participants ($mean{\pm}SD$ of age = $28.7{\pm}6.6$) by using a modified magnitude estimation scale. Based on the survey results, the material design variables were screened from statistical, technical, and practical aspects. With the screened variables, satisfaction models were developed by using the quantification I method for the six interior parts, indicating the importance of material design variables and preferred material properties.

Fabrication of High-transparent and Self-cleaning Solar Cell Protection Film (고투과성 및 자정기능을 가지는 태양전지 보호필름의 제작)

  • Lee, Seong-Hwan;Han, Kang-Soo;Shin, Ju-Hyeon;Hwang, Seon-Yong;Lee, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • 화석연료의 고갈과 온실가스 배출의 증가로 지속 가능한 친환경 에너지 생산이 요구되는 가운데, 태양광 발전은 이러한 조건을 만족시키는 에너지 생산 방안으로 주목받고 있다. 태양광 발전은 태양 직사광을 이용한 발전 방법 때문에 실외에 설치되어야 하며 이에 따라 외부의 충격이나 오염물질로부터 태양전지 패널을 보호하기 위한 보호층이 필수적이다. 그러나 보호층에 의한 입사광의 반사 및 먼지나 황사에 의한 보호층의 오염 등은 태양전지의 발전 효율을 감소시키는 요인으로 작용하여 이에 대한 대응이 필요하다. 본 연구에서는 PET 필름에 나노 임프린트 리소그래피 및 핫 엠보싱 공정을 이용하여 moth-eye 반사방지 패턴을 형성함으로써 보호층에서의 입사광 반사를 억제하였다. 또한, 이러한 반사방지 패턴에 초소수성 자기조립단분자막을 코팅하여 표면 에너지를 낮춤으로써 먼지 및 황사에 의해 오염되었을 경우에도 빗물에 의해 오염 물질이 쉽게 씻겨 내릴 수 있는 자정기능을 부여하였다. 이러한 반사방지를 통한 입사광 투과량의 향상 및 초소수성 표면에 의한 자정작용에 의하여 태양전지의 발전 효율이 증가되었다.

  • PDF

Study of Developing Multi-Function High-chair Using Eco-Friendly Material (친환경 소재를 이용한 유아용 다기능 식탁의자 개발 연구)

  • Baik, Eun
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • In the modern society, social activities of married women are increasing along with the economic growth, which leads to low birth rates of the situation where most people give birth to only one or two children. Korea in particular records one of the lowest birth rates among many other nations of the world. Despite the situation where overall industrial consumer economy is not good, baby goods market is becoming more luxurious and diversified, and its scale is also growing. Desires of young parents in their 20s and 30s for their children leads to consumption desires of luxurious baby goods, and despite the fact that their taste level rises by easily gaining access to immense baby information via the Internet, our nation's baby furniture market is unreasonably lacking the ability to satisfy the needs of such consumers. Furniture culture of our nation today is based on the stand-up culture of the West. However, analyzing the life culture inside our homes, stand-up and sit-down cultures of the West and the East are coexisting complexly. Such life pattern can be more easily found in households with babies. As such, baby furniture that satisfies our unique life culture and has quality, design and price competitiveness is desperately needed. In such market state, this study is expected to make economic and cultural accomplishments by focusing on the newly embossing baby furniture market and developing products, delivering them to consumers to open new markets and developing into an industry.

A Study on the 3-D Surface Effects of Fashion Design (패션디자인의 입체적(立體的) 표면효과(表面效果)에 관(關)한 연구(硏究))

  • Kim, Ji-Young;Cho, Kyu-Hwa
    • Journal of Fashion Business
    • /
    • v.9 no.1
    • /
    • pp.1-20
    • /
    • 2005
  • This study is purposed to provide new idea for developing high value added fashion goods by studying relief effects of fashion design. Based on prior researches, various ways to give relief effects were searched and then modern fashion design cases were looked for which were referred to fashion-related magazines and collection-related internet sites since the late 1990s. The ways for relief effects are weaving, industrial finishing, sewing technique. Weaving techniques are about fancy yarns, variation of weaving structure, pile weave. Industrial finishing techniques which can make relief effects are embossing, heat-setting, shearing, pliss, burn out, flocking. Sewing techniques are quilting, pleats, embroidery, slash, attachment in accordance with the way to produce relief effects. The forms of relief effects are tactile pattern that cannot be seen in the distance, subtle relief pattern which is more three-dimensional than tactile pattern, rhythmical relief pattern, sculptural pattern, and deep-volumed pattern. The present research can provide practical data for design by studying techniques of relief effects and collecting and arranging design cases that have been sporadically carried out. The study on relief and unique surface effects can be a way to effectively stimulate and express emotions of modern people with various taste and individuality.

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

Estimation of Formability for Sheet Metal Forming of Electronic Parts (전자 박판 부품의 가공성 평가에 대한 연구)

  • Lee, B.C.;Kang, S.Y.;Moon, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.104-114
    • /
    • 1996
  • For the improvement of productivity, the reduction of cost and time for manufacturing is mandatory, especially in the field of electromic industry. The study is concerned with a practical means of systematic assistance to formability estimation and selection of reliable design specification for electronic sheet metal parts. The objective of this research work is to develop a simulation system which hops to analyze the target processes with the finite element method and to acquire available design data quickly and exactly. The simulation system developed in the study consists of design verification, selection of optimal combination of parameters, knowledge acquisition and graphical user interface(GUI). Design verification is automatically carried out by using the finite element method. A data base management system and nomograms are utilized for knowledge acquisition. The developed system has been applied to some major sheet metal forming operations such as flanging, embossing, bending and blanking. According to the simulated results, the validation of the target processes has been confirmend. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the designer's understanding and evaluation, thus providing a practical means of robust design and evaluation of forma- bility for producing electronic sheet metal parts.

  • PDF

NUMERICAL SIMULATION OF THERMAL CONTROL OF A HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY MACHINES (고온 나노임프린트 장비용 핫플레이트의 열제어에 대한 수치모사)

  • Park, G.J.;Kwak, H.S.;Shin, D.W.;Lee, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.153-158
    • /
    • 2007
  • Since the introduction of Nanoimprint in the mid-1990s, Nanoimprint lithography, a low-cost, non-convential method, has been the dominant lithography technology that guarantees high-throughput patterning of nanostructures. Based on the mechanical embossing mechanism, Nanoimprint lithography creates the nanopatterns on the polymer material cast on the substrate. In essence, the process needs nanofabrication equipment for printing with the adequate control of temperature, pressure and control of parallels of the stamp and substrate. This article introduce the possibility and reality of the thermal control on the hot plate using a CFD code. Numerical computation has been conducted for assessing the feasibility of a hot plate($120{\times}120\;mm2$). PID control is adopted to ensure high temperature uniformity in several zones. Parallel experiments have also been performed for verifying thermal performance. Not only show the results the optimum number of thermocouples related to controllers but also suggest that the thermal simulation using a CFD code would be an alternative method to design and develop the thermal control equipment in the financial aspect.

  • PDF

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • Nil, Ri-Swi;Han, Ji-Yeong;Gwon, Hyeon-Geun;Lee, Gyu-Tae;Go, Du-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

Estimation of Formability for Sheet Metal Forming of Electronic Parts (전자 박판 부품의 가공성 평가에 대한 연구)

  • 이병찬;강연식;양동열;문재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.918-923
    • /
    • 1994
  • For the improvement of productivity, the reduction of cost and time for manufacturing is mandatory, especially in the field of electronic industry. The study is concemed with a practical means of systematic assistance to formability estimation and selection of reliable design specification for electronic sheet metal parts. The objective of this research work is to develop a simulation system which helps to analyze the target processes with the finite element method and to acquire available design data quickly and exactly and exactly. The simulation system developed in the study consists of design verification, selection of optimal combination of parameters, knowledge acquisition and graphical user interface(GUI). Design verification is automatically carried out by using the finite element method. A data base management system and nomograms are utilized for knowledge acquistion. The developed system has been applied to some major sheet metal forming operations such as flanging, embossing, bending and blanking. According to the simulated results, the validation of the target processes has been confirmed. Analysis data, estimation rules of formability and graphical representation of the analysis have been employed for the designer's understanfing and evaluation, thus providing a practical means of robot design and evaluation of formability for production electronic sheet metal parts.

  • PDF