• Title/Summary/Keyword: embedded sensor design

Search Result 211, Processing Time 0.028 seconds

Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift (무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법)

  • Song, Young-Hun;Park, Jee-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

Design and Implementation of Algorithms for the Motion Detection of Vehicles using Hierarchical Motion Estimation and Parallel Processing (계층화 모션 추정법과 병렬처리를 이용한 차량 움직임 측정 알고리즘 개발 및 구현)

  • 강경훈;정성태;이상설;남궁문
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1189-1199
    • /
    • 2003
  • This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using tile pipeline and the data flow technique. The proposed method has been implemented by using an embedded system. The proposed block matching algorithm has been implemented on PLDs(Programmable Logic Device) and clustering algorithm has been implemented by ARM processor. Experimental results show that the proposed system detects the motion of vehicles in real-time.

  • PDF

Development of a Remote Monitoring System of the Residual Amount of Ringer's Solution at Hospitals Using a Microprocessor (마이크로프로세서를 이용한 병원용 환자 링거액 잔류유량 원격 실시간 검사 시스템 개발)

  • Ha, Kwan-Yong;Gwon, Jong-Won;Odgelral, Odgelral;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.279-282
    • /
    • 2005
  • A real-time measurement and control system was developed, This system is used for nurses at hospitals to check the residual quantity and changing time of Ringer's solution in nurses' room. Load Cell is utilized as a sensor to check the residual quantity of Ringer's solution, This Load Cell detects the physical changes of Ringer's solution and transfers electronic signal to the amplifier. Amplified analog signal is converted into digital signal by NO converter. Developed Embedded system, which computes these data with microprocess(8052) then makes it possible to monitor the residual quantity of Ringer's solution real-time on a server computer. A Checking system on Residual Quantity of Ringer's Solution Using Load cell cut costs using a simple design for a circuit

  • PDF

Mobile Performance Evaluation of Mecanum Wheeled Omni-directional Mobile Robot (메카넘휠 기반의 전방향 이동로봇 주행성능 평가)

  • Chu, Baeksuk;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.374-379
    • /
    • 2014
  • Mobile robots with omni-directional wheels can generate instant omni-directional motion without requiring extra space to change the direction of the body. Therefore, they are capable of moving in an arbitrary direction under any orientation even in narrow aisles or tight areas. In this research, an omni-directional mobile robot based on Mecanum wheels was developed to achieve omni-directionality. A CompactRIO embedded real-time controller and C series motion and I/O modules were employed in the control system design. Ultrasonic sensors installed on the front and lateral sides were utilized to measure the distance between the mobile robot and the side wall of a workspace. Through intensive experiments, a performance evaluation of the mobile robot was conducted to confirm its feasibility for industrial purposes. Mobility, omni-directionality, climbing capacity, and tracking performance of a squared trajectory were selected as performance indices to assess the omni-directional mobile robot.

Robot Driving System and Sensors Implementation for a Mobile Robot Capable of Tracking a Moving Target (이동물체 추적 가능한 이동형 로봇구동 시스템 설계 및 센서 구현)

  • Myeong, Ho Jun;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.607-614
    • /
    • 2013
  • This paper proposes a robot driving system and sensor implementation for use with an education robot. This robot has multiple functions and was designed so that children could use it with interest and ease. The robot recognizes the location of a user and follows that user at a specific distance when the robot and user communicate with each other. In this work, the robot was designed and manufactured to evaluate its performance. In addition, an embedded board was installed with the purpose of communicating with a smart phone, and a camera mounted on the robot allowed it to monitor the environment. To allow the robot to follow a moving user, a set of sensors combined with an RF module and ultrasonic sensors were adopted to measure the distance between the user and the robot. With the help of this ultrasonic sensors arrangement, the location of the user couldbe identified in all directions, which allowed the robot to follow the moving user at the desired distance. Experiments were carried out to see how well the user's location could be recognized and to investigate how accurately the robot trackedthe user, which eventually yielded a satisfactory performance.

Design and Implementation of Embedded Monitoring System using Improvement of Monitoring Sensor (개선된 모니터링 센서를 이용한 임베디드 모니터링 시스템의 설계 및 구현)

  • ;Shin, Won;Kim, Tae-Wan;Chang, Chun-Hyon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.778-780
    • /
    • 2005
  • 최근 가정, 자동차, 사무실등 많은 장소에서 임베디드 장치를 쉽게 찾아볼 수가 있다. 이렇듯 많은 분야에서 임베디드 장치가 사용됨에 따라 임베디드 시스템 제조업자들은 보다 빠른 시간에 많은 분야에 적용 가능한 임베디드 소프트 웨어를 개발해야 하는 어려움이 생겼다. 이러한 어려움은 소프트웨어 개발시간을 줄일 수 있도록 도와주는 개발환경의 필요성을 증가시켰다. 개발도구 중 디버깅도구는 개발시간의 대부분을 차지하는 디버깅 과정을 도움으로써 개발시간 단축이 큰 역할을 한다. 기존 디버깅도구는 모든 변수에 대한 데이터 추출을 하기 위하여 자원사용량과 처리량을 증가 시킴으로써 많은 부하를 발생시킨다. 이에 모니터링에 의한 부하를 최소화하기 위하여 변수 값을 추출하기 위한 모니터링 센서 기법과 실행시간 중 모니터링 대상을 변경하기 위한 디버깅레벨기법을 사용하여 소프트웨어의 내부 변수가 동작하면서 발생되는 오류를 검출할 수 있는 임베디드 모니터링 시스템을 설계 및 개발하였다. 하지만 실행시간 모니터링 중에 센서의 동작과정에 따르는 부하로 인하여 정확하지 않은 데이터를 추출할 수 있는 문제점이 발생되었다. 이러한 문제를 해결하기 위해 본 논문에서는 센서의 수행과정을 최소화하도록 센서 처리 구조를 변경하고 최적화된 센서 구조의 실행시간을 줄이기 위해 비트마스킹 기법을 사용한다.

  • PDF

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

A Study on Development of Wearable Technology Based Biker Suits Part.1 (이륜차운전자를 위한 웨어러블 테크놀로지 의류 개발에 관한 연구 제1보)

  • Lee, Hyun-Seung;Lee, Jae-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.8
    • /
    • pp.57-72
    • /
    • 2011
  • The purpose of this research is to develop a safe and convenient wearable technology wear for bikers. For this, we studied the current usage of two-wheeled vehicles and have also researched the rate of accidents and its causes. We then used them along with previous studies in terms of visual perception as factors to decide the crucial elements of the riders' apparel. Case studies and the break down for the established prototypes for bikers were practiced as well. Based on this process, a survey was conducted to find out the needs of the bikers in the areas of both apparel and technology and then proceeded to produce the appropriate design and device modules. In the apparel sector, the result of the survey indicated that it was considerable that any digital devices were not shown to sustain a natural visible look. It also was essential that the materials were durable and made for safety and easy movement. In the digital function sector, it was significant that a motion input interface which will be embedded into the wear was needed to avoid any dangerous situations. This would ensure the safety of not only the rider but the surrounding riders as well. Lastly, protecting the rider's skin from any harmful elements was regarded necessary as well. Based on these requirements, a new prototype was created and will be tested if the requirements stated above are all met and will be evaluated according to the effectiveness of its functions.

Design of Hardware(Hacker Board) for IoT Security Education Utilizing Dual MCUs (이중 MCU를 활용한 IoT 보안 교육용 하드웨어(해커보드) 설계)

  • Dong-Won Kim
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • The convergence of education and technology has been emphasized, leading to the application of educational technology (EdTech) in the field of education. EdTech provides learner-centered, customized learning environments through various media and learning situations. In this paper, we designed hardware for EdTech-based educational tools for IoT security education in the field of cybersecurity education. The hardware is based on a dual microcontroller unit (MCU) within a single board, allowing for both attack and defense to be performed. To leverage various sensors in the Internet of Things (IoT), the hardware is modularly designed. From an educational perspective, utilizing EdTech in cybersecurity education enhances engagement by incorporating tangible physical teaching aids. The proposed research suggests that the design of IoT security education hardware can serve as a reference for simplifying the creation of a security education environment for embedded hardware, software, sensor networks, and other areas that are challenging to address in traditional education..

Development of Sensor and Block expandable Teaching-Aids-robot (센서 및 블록 확장 가능한 교구용 보조 로봇 개발)

  • Sim, Hyun;Lee, Hyeong-Ok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, we design and implement an educational robot system that can use scratch education with the function of user demanding to perform robot education in actual school site in an embedded environment. It is developed to enable physical education for sensing information processing, software design and programming practice training that is the basis of robotic system. The development environment of the system is Arduino Uno based product using Atmega 328 core, debugging environment based on Arduino Sketch, firmware development language using C language, OS using Windows, Linux, Mac OS X. The system operation process receives the control command of the server using the Bluetooth communication, and drives various sensors of the educational robot. The curriculum includes Scratch program and Bluetooth communication, which enables real-time scratch training. It also provides smartphone apps and is designed to enable education like C and Python through expansion. Teachers at the school site used the developed products and presented performance processing results satisfying the missionary needs of the missionaries.