• Title/Summary/Keyword: embedded robot

Search Result 283, Processing Time 0.028 seconds

Indoor Environment Monitoring Using a PXA 270-based Mobile Embedded System (PXA 270 기반 이동형 임베디드 시스템을 이용한 실내 환경 모니터링)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.249-251
    • /
    • 2009
  • Mobile patrol robots are mainly used in aerospace and military engineering because they can work at dangerous environment replacing a man. This paper presents a study on the remote monitoring and control system of a mobile patrol robot platform using TCP/IP. The mobile robot consists of intel PXA270 and linux-based system. It can get environment information such as images, temperature, humidity and slope by using two cameras and various sensors. And it transmits information data to a monitoring system through the ad-hoc network which is one of wireless network solutions. At this time, a mobile robot is a server and a monitoring system is a client. Users can monitor environment information which is received from a mobile robot by an application based on PC. We have used TCP/IP protocol, socket programming, interface technique of process and devices and control algorithm to embody the mobile robot and its monitoring system. Experimental results shows that the system can be utilized as a remote patrol monitoring tool.

  • PDF

Driving Control of an Omniwheel a Polishing Robot Using Beacon System and Encoder (Beacon System과 Encoder를 이용한 Omniwheel 연마 로봇의 주행 제어)

  • Song, Jun-Woo;Choi, Byeong-Chan;Kim, Tae-Eon;Sreenivasan, Sreejith Manalipadam;Lee, Jang-Myung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.213-221
    • /
    • 2017
  • Utilizing the existing polishing robot prevents unrestricted change of direction, driving, and identification of driving pathway. To overcome this barrier, driving mechaism has been designed with Omniwheels with encoders and RSSI method of beacon system has been utilized to identify the driving path by position recognition. Due to the wheel characteristics, the Omniwheel mobile robot generates greater slip than the conventional mobile robot, which reduces its driving accuracy. Therefore, to improve the driving accuracy, the localization is conducted through the fusion of encoder and RSSI of beacon data to compensate for the errors caused by Dead Reckoning and inaccuracy of sensors. Finally, the localization accuracies of the proposed and conventional indoor localization method are compared to show effectiveness of the proposed driving control for a polishing robot.

A Study on the Indoor Navigation of Guiding Robot for the Visually Impaired Using Sensor Fusion (센서 퓨전을 이용한 시각 장애인 유도 로봇의 실내주행 연구)

  • Jang, Chul-Woong;Jung, Ki-Ho;Yeom, Moon-Jin;Shim, Hyun-Min;Hong, Yeong-Ki;Shim, Jae-Hong;Lee, Eung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.923-924
    • /
    • 2006
  • In this paper, we propose the sensor fusing method for the obstacle avoidance of guiding robot for the visually impaired In our system, we acquire obstacles distances information using ultrasonic sensors, and its width is acquired by image sensor. We also compute avoidance angle using are distance and width information gained by sensor. After the robot avoid the obstacle by computed angle, the robot returns to its original path using odometry. The robot consists of the SA1110-based controller, sensory part using sonar array and image sensor, and motion part using differential drive for climbing stairs. This system use the embedded linux for OS, and also is developed by the QT/Embedded for GUI.

  • PDF

Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function (시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어)

  • Ye, Donghee;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.119-127
    • /
    • 2021
  • The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

A Study on the Design of Embedded System-Based Wheel Drive Robots for Overcoming the Terrain (지형 극복을 위한 임베디드 시스템 기반 바퀴 구동형 로봇의 설계에 관한 연구)

  • Kim, Min Gyu;Seon Ji Ho;Jeong Se Jin;Kim Sang Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.559-567
    • /
    • 2024
  • The purpose of this paper is to design and implement a wheel-driven small intelligent robot with intelligent sensor signal processing and various driving methods to overcome non-flat terrain such as slopes and steps and avoid obstacles. An eccentric gear structure was proposed to overcome non-flat terrain, optimal sensor signal processing was applied to maintain real-time balance, and an omnidirectional driving method that enables obstacle recognition and escape from a narrow space using a LiDAR sensor was proposed and designed to overcome obstacles. An optimal embedded system was designed and constructed to implement and control the intelligent elements of the robot.

Development and Implementation of Smart Manufacturing Big-Data Platform Using Opensource for Failure Prognostics and Diagnosis Technology of Industrial Robot (제조로봇 고장예지진단을 위한 오픈소스기반 스마트 제조 빅데이터 플랫폼 구현)

  • Chun, Seung-Man;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.187-195
    • /
    • 2019
  • In the fourth industrial revolution era, various commercial smart platforms for smart system implementation are being developed and serviced. However, since most of the smart platforms have been developed for general purposes, they are difficult to apply / utilize because they cannot satisfy the requirements of real-time data management, data visualization and data storage of smart factory system. In this paper, we implemented an open source based smart manufacturing big data platform that can manage highly efficient / reliable data integration for the diagnosis diagnostic system of manufacturing robots.

Generalised Non Error-Accumulative Quantisation Algorithm with feedback loop

  • Koh, Kyoung-Chul;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1269-1274
    • /
    • 2004
  • This paper presents a new quantisation algorithm which has the closed-loop form and guarantees the boundness of accumulative error. This algorithm is particularly useful for mobile robot navigation that is usually implemented on embedded systems. If wheel commands of the mobile robot are given by velocity or positional increment at every control instant and quantised due to finite word length of controller's CPU, the quantisation error gets accumulated to causes large position error. Such an error accumulative characteristic is fatal for non wheeled mobile robots or autonomous vehicles with non-holonomic constraint. To solve this problem, we propose a non-error accumulative quantisation algorithm with closed-loop form. We also show it can be extend to a generalized form corresponding to the n-th order accumulation. The boundness of the accumulative quantisation error is investigated by a series of computer simulation. The proposed method is particularly effective to precise navigation control the autonomous mobile robots.

  • PDF

Robust Localization Algorithm for Mobile Robots in a Dynamic Environment with an Incomplete Map (동적 환경에서 불완전한 지도를 이용한 이동로봇의 강인한 위치인식 알고리즘의 개발)

  • Lee, Jung-Suk;Chung, Wan Kyun;Nam, Sang Yep
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.109-118
    • /
    • 2008
  • We present a robust localization algorithm using particle filter for mobile robots in a dynamic environment. It is difficult to describe moving obstacles like people or other robots on the map and the environment is changed after mapping. A mobile robot cannot estimate its pose robustly with this incomplete map because sensor observations are corrupted by un-modeled obstacles. The proposed algorithms provide robustness in such a dynamic environment by suppressing the effect of corrupted sensor observations with a selective update or a sampling from non-corrupted window. A selective update method makes some particles keep track of the robot, not affected by the corrupted observation. In a sampling from non-corrupted window method, particles are always sampled from several particle sets which use only non-corrupted observation. The robustness of proposed algorithm is validated with experiments and simulations.

  • PDF

Omnidirectional Camera System Design for a Security Robot (경비용 로봇을 위한 전방향 카메라 장치 설계)

  • Kim, Kilsu;Do, Yongtae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.74-81
    • /
    • 2008
  • This paper describes a low-cost omnidirectional camera system designed for the intruder detection capability of a security robot. Moving targets on sequential images are detected first by an adaptive background subtraction technique, and the targets are identified as intruders if they fail to enter a password within a preset time. A warning message is then sent to the owner's mobile phone. The owner can check scene pictures posted by the system on the web. The system developed worked well in experiments including a situation when the indoor lighting was suddenly changed.

  • PDF

Embedded Web Server for Monitoring and Control of a Mobile Robot

  • Sin,Yonggak;Kwak, Jaehyuk;Lim, Joonhong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.2-132
    • /
    • 2001
  • In this paper, we propose an efficient configuration of a system for the remote control of a mobile robot. The interface has a video feedback and runs in standard web environments. For control servers of mobile robot and CCD camera, we use the environment with embedded web server Specific program has been developed in order to grab the images using Microsoft Visual C++ The external camera sends the video signal to a framegrabber in the PC, then this program grabs the images and puts them in shared memory in BMP format. For a video feedback, we use image feedback based on the client pull technique supported by Netscape and Internet Explorer.

  • PDF