• 제목/요약/키워드: embedded footing

검색결과 17건 처리시간 0.019초

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능 (Seismic Performance of Column-Footing Connection of Modular Pier using CFT)

  • 김지영;김기도;마향욱;정철헌
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.73-85
    • /
    • 2014
  • CFT 기둥은 시공이 간단하고 경제적이며 구조성능이 우수한 현장타설 매입형 연결 형식이다. 본 연구에서는 모듈러 교각에 적용되는 CFT 기둥-기초 연결부 형식을 제안하고, 실험을 통하여 구조성능을 평가하였다. 기둥-기초 연결부의 구조성능을 평가하기 위해서 기초부 콘크리트에 매입되는 CFT 기둥의 매입깊이를 변수로 총 4개의 실험체를 제작하여 실험을 수행하였다. 준정적 실험결과, 매입깊이가 0.6D인 실험체에서는 낮은 하중단계에서 기초부의 콘파괴로 인하여 상대적으로 낮은 연성능력을 보였다. 그러나 매입깊이가 0.9D 이상인 실험체에서는 기초부의 콘파괴가 방지되고 CFT 기둥 하단부에서 전형적인 휨파괴 거동을 보이며 높은 연성능력을 발휘하였다. 하중-변위 이력곡선, 변위 연성도 및 에너지 소산능력 등을 분석한 결과, 제안된 CFT 기둥-기초 연결부의 매입깊이는 0.9D~1.2D 수준이 내진성능을 발휘하는 합리적인 수준인 것으로 평가되었다.

Finite element analysis of a piled footing under horizontal loading

  • Amar Bouzid, Dj.
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.29-43
    • /
    • 2011
  • In this paper a semi-analytical approach is proposed to study the lateral behavior of a piled footing under horizontal loading. As accurate computation of stresses is usually needed at the interface separating the footing (pile) and the soil, this important location should be appropriately modeled as zero-thickness joint element. The piled footing is embedded in elastic soil with either homogeneous modulus or modulus proportional to depth (Gibson's soil). As the pile is the principal element in the piled footing system, a limited parametric study is carried out in order to investigate the influence of footing dimensions and the interface conditions on the lateral behavior of the pile. Hence, the pile behavior is examined through its main governing parameters, namely, the lateral displacement profiles, the bending moments, the shear forces and the soil reactions. The numerical results are presented for Poisson's ratio of 0.2 to represent a large variety of sands and Poisson's ratio of 0.5 to represent undrained clays.

철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구 (Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads)

  • 김정성;김대상;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

Bearing capacity and failure mechanism of skirted footings

  • Shukla, Rajesh P.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.51-66
    • /
    • 2022
  • The article presents the results of finite element analyses carried out on skirted footings. The bearing capacity increases with the provision of the flexible and rigid skirt, but the effectiveness varies with various other factors. The skirts are more efficient in the case of cohesionless soils than cohesive and c-ϕ soils. Efficiency reduces with an increase in the soil strength and footing depth. The rigid skirt is relatively more efficient compared to the flexible skirt. In contrast, to the flexible skirt, the efficiency of the rigid skirt increases continuously with skirt length. The difference in the effectiveness of both skirts becomes more noticeable with an increase in the strength parameters, skirt length, and footing depth. The failure mechanism also changes significantly with the inclusion of a rigid skirt. The rigid skirt behaves as a solid embedded footing, and the failure mechanism becomes confined with an increase in the skirt length. Few small-scale laboratory tests were carried out to study the flexible and rigid skirt and verify the numerical study results. The numerical analysis results are further used to develop nonlinear equations to predict the enhancement in bearing capacity with the provision of the rigid and flexible skirts.

Pseudostatic analysis of bearing capacity of embedded strip footings in rock masses using the upper bound method

  • Saeed Shamloo;Meysam Imani
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.381-396
    • /
    • 2023
  • The present paper evaluates seismic bearing capacity of rock masses subjected to loads of strip footings using the upper bound method. A general formula was proposed to evaluate the seismic bearing capacity considering both the horizontal and vertical accelerations of the earthquake and the effects of footing embedment depth simultaneously. Modified Hoek-Brown failure criterion was employed for the rock mass. Some comparisons were made with the available solutions and the finite element numerical models to show the accuracy of the developed upper bound formulations. The obtained results show significant improvement compared to the other available solutions. By increasing the horizontal earthquake acceleration from 0.1 to 0.3, the bearing capacity was reduced by up to 39%, while the effect of the vertical earthquake acceleration depends on its direction. An upward acceleration in the range of zero to 0.2 results in an increase in the bearing capacity by up to 24%, while the downward earthquake acceleration has an adverse effect. Also, by increasing the embedment depth of the footing from zero to 5 times the footing width, the value of seismic bearing capacity was raised about 86%. The obtained results were presented as design tables for use in practical applications.

매시브 콘크리트에 배근된 축방향 주철근의 인발특성에 관한 해석적 연구 (An Analytical Study on the Pullout Properties of Axial Bars Embedded in Massive Concrete)

  • 장일영;송재호;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.194-200
    • /
    • 1993
  • The objective of this study is to clarify analytically the pullout behavior of axial bars from a footing. The bond stress-slip model obtained from the results by the finite element method as well as the pullout tests in massive concrete was used in order to evaluate the slip of bars from the footing. Also, the process of bond mechanism was taken into consideration on order to express the deterioration of bond stress along bars, The shape and magnitude of bond stress distribution depends upon each loading steps. Using equilibrium equation of axial force, $\tau$-S relationship and $\sigma$s-$\varepsilon$s relationship, the differential equations of each loading steps are derived. Applying both boundary and equilibrium conditions to the equations, the amount of slip could be determined. Calculated values on the basis of proposed method evaluation of the slip of bars have a good agreement with the experimental results.

  • PDF

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

매시브콘크리트에 배근된 주철근의 부착특성에 관한 해석적 연구 (An Analytical Study on the Bond-Properties of Axial Bars Embedded in Massive Concrete)

  • 장일영;이호범;이승훈;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.143-147
    • /
    • 1992
  • Description of the behavior of the R.C structural members fixed on massive concrete is not normally generalization of recognized configuration for regular R.C. design guidanes. This can be due to the complexity of evaluation of internal resistancy and deflection changes of the members subjected to the various external forces. On the base of axially loaded member fixed on footing, however, the estimation of deflection changes due to flexural force shear force and rotational force is to be carried out in ways of specifying the bond characteristics of axial bars embedded in massive concrete. This work is to quantify adhesion of steel-concrete, initial concrete cracking stress near bar rib, maximum bond stress and residual stress in concrete respectively. In addition to quantification of them for particulate behavior, the suggestions of multi-linear bond stress-slip diagram made in carrying out finite element analyses for adhesion failure, examining concrete cracking status and reviewing existing experimental data lead to alternatively constructed relationship between bond stress and slip for a axial bars embedded massive concrete.

  • PDF

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.