• Title/Summary/Keyword: embedded discontinuities

Search Result 21, Processing Time 0.019 seconds

A mixture theory based method for three-dimensional modeling of reinforced concrete members with embedded crack finite elements

  • Manzoli, O.L.;Oliver, J.;Huespe, A.E.;Diaz, G.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.401-416
    • /
    • 2008
  • The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 3D composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Mesh Independent 3-D Modeling of Spot Welded Joints using Finite Elements with Embedded Strong Discontinuities (강한 불연속이 내장된 유한요소를 이용한 스폿 용접 접합의 망 독립적 삼차원 모델링)

  • Kim, Jongheon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.283-288
    • /
    • 2017
  • A spot welded joint is modeled using 3-D finite elements with embedded strong discontinuities. The spot weld is represented by a special cohesive law on the embedded discontinuity surface, instead of meshing its geometry. This strategy naturally eliminates the need of adaptive FEM meshes fitting the local geometry of the spot weld. Mesh independent solutions are guaranteed by explicitly modeling the detailed shape of the spot weld, which is in contrast with the exiting approach using point constraints for the spot weld.

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung;Davenne, Luc;Brancherie, Delphine;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.303-315
    • /
    • 2010
  • In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

2D evaluation of crack openings using smeared and embedded crack models

  • Gamino, Andre Luis;Manzoli, Osvaldo Luis;de Oliveira e Sousa, Jose Luiz Antunes;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.483-496
    • /
    • 2010
  • This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model. In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element. As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity. However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members' structural behavior. On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks). This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures. Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models.

Localized failure in damage dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.211-235
    • /
    • 2015
  • In this work we present a one-dimensional damage model capable of representing the dynamic fracture for elastodamage bar with combined hardening in fracture process zone - FPZ and softening with embedded strong discontinuities. This model is compared with another one we recently introduced (Do et al. 2015) and it shows a good agreement between two models. Namely, it is indicated that strain-softening leads to a sensitivity of results on the mesh discretization. Strain tends to localization in a single element which is the smallest possible area in the finite element simulations. The strain-softening element in the middle of the bar undergoes intense deformation. Strain increases with increasing mesh refinement. Strain in elements outside the strain-softening element gradually decreases to zero.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Analysis of Spin Valve Tunneling Magnetoresistance Sensor for Eddy Current Nondestructive Testing

  • Kim, Dong-Young;Yoon, Seok-Soo;Lee, Sang-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.524-530
    • /
    • 2008
  • The spin valve tunneling magnetoresistance (SV-TMR) sensor performance is analyzed using Stoner-Wohlfarth model for the detection of eddy current signals in nondestructive testing applications. The SV-TMR response in terms of the applied AC magnetic field dominantly generates the second harmonic amplitude in hard axis direction. The second harmonic eddy current signal detection using SV-TMR sensor shows higher performance than that of the coil sensor at lower frequencies. The SV-TMR sensor with high sensitivity gives a good solution to improve the low frequency performance in comparison with the inductive coil sensors. Therefore, the low frequency eddy current techniques based on SV-TMR sensors are specially useful in the detection of hidden defects, and it can be applied to detect the deeply embedded flaws or discontinuities in the conductive materials.